Étude des pressions de l’activité de transformation de la canne sur les milieux aquatiques
Sommaire

Table des tableaux ... 3
Table des figures .. 4
I. Contexte de l’étude .. 6
 A. Présentation du bassin hydrographique de la Martinique .. 6
 B. Présentation de la filière canne-sucre-rhum .. 8
 C. Collecte des données et visites de terrains .. 14
II. Les pressions de la filière .. 15
 A. Les pressions majeures de la culture de la canne à sucre sur les milieux aquatiques 15
 1. Les engrais .. 15
 2. Les pesticides .. 18
 3. Les prélèvements d’eau .. 21
 4. Pression érosion ... 22
 5. Pression sur la consommation énergétique .. 22
 B. Traitement des rejets de vinasse ... 36
 1. Bibliographie des systèmes de traitements ... 36
 2. Traitement mis en place par les distilleries en Martinique ... 41
 3. Bilan .. 54
III. Les distilleries ... 24
 A. Les pressions majeures des distilleries sur les milieux aquatiques ... 24
 1. Rejets des eaux de refroidissement .. 24
 2. Rejet des vinasses .. 26
 3. Rejet Bagasse .. 35
 4. Prélèvement d’eau .. 35
 B. Traitement des rejets de vinasse ... 36
 1. Bibliographie des systèmes de traitements ... 36
 2. Traitement mis en place par les distilleries en Martinique ... 41
 3. Bilan .. 54
Conclusion ... 56
Bibliographie .. 57

ANNEXE 1 : Pesticide utilisé pour la culture de la canne à sucre en Martinique 58
Table des tableaux

Tableau 1 : Situation hydrique de la Martinique (Révision de l’état des lieux ODE, 2019) 6
Tableau 2 : Paramètres de la production de canne à sucre (DAAF Mémento agricole 2017) 9
Tableau 3 : Demande de donnée réalisées au cours du stage .. 14
Tableau 4 : Présentation des différents apports d’azote (Révision de l’état des lieux 2019) 16
Tableau 5 : Pollution Phosphore (DEAL 2017) ... 18
Tableau 6 : Volume d’eau prélevés en milieu naturel (Révision de l’état des lieux, 2019) 21
Tableau 7 : Caractérisation des vinasses par l’INRA 2009 ... 26
Tableau 8 : Caractérisation des vinasses par le CTCS en 2009 .. 27
Tableau 9 : Production de vinasse des distilleries de la Martinique ... 27
Tableau 10 : Caractérisation des MES lors des visites 2020 ... 28
Tableau 11 - Résumé production distillerie et vinasses ... 29
Tableau 12 : Charge organique entrante de la DCO ... 33
Tableau 13 : Caractérisation de la dco (kg/an) en 2017 (source : Creocean) ... 33
Tableau 14 : Résultats des calculs de la charge organique en eH .. 34
Tableau 15 : Prélèvement d’eau des distilleries (IREP en 2016) .. 35
Tableau 16 : Synthèse des avantages et inconvénients d’un traitement primaire 40
Tableau 17 : Synthèse des avantages et inconvénients d’un traitement secondaire 40
Tableau 18 : Filière de traitement des distilleries de Martinique .. 41
Tableau 19 : Résultat du traitement du bassin d’aération (moyenne des 9 bilans 24h) 43
Tableau 20 : Résultats du filtre planté de roseaux de la distillerie JM, 2020 ... 43
Tableau 21 : Analyse de l’efficacité du traitement de JM ... 43
Tableau 22 : Prélèvement ponctuel de la vinasse de la distillerie La Mauny, 2018 46
Tableau 23 : Résultats d’analyse de la lagune 1 de la distillerie du Simon ... 52
Tableau 24 : Efficacité des traitements des distilleries (source: données des distilleries) 55
Table des figures

Figure 1 : Captages d’eau pour la production d’eau potable en Martinique (ARS 2004) 7
Figure 2 : Parcellaire agricole de la Martinique (Révision de l’état des lieux 2019, ODE Martinique) ... 8
Figure 3 : Répartition des zones agricoles (Révision de l’état des lieux 2019, ODE Martinique)......... 9
Figure 4 : Position des distilleries de la Martinique (Observatoire de l’eau, 2020) 11
Figure 5 : Organigramme des distilleries de la Martinique, CTCS-Martinique 12
Figure 6 : Pression azoté sur les bassins versants de la Martinique, Révision de l’état des lieux 2019 17
Figure 7 : Localisation des différentes stations de suivi en cours d’eau de l’ODE (Rapport Pesticide de
l’ODE 2019).. 20
Figure 8 : Principe de fonctionnement d'un refroidisseur adiabatique... 25
Figure 9 : refroidisseur adiabatique de La Mauny... 25
Figure 10 : Charge entrante des distilleries et des principales STEU (ODE, 2020) 30
Figure 11 : répartition des rejets en MES en fonction de la nature de l’activité industrielle (Etat des
lieux 2019, ODE).. 31
Figure 12 : Lagune D non aérée de La Mauny, lagune de stockage avant rejet en rivière...................... 37
Figure 13 : Plan aérien des filteres plantes de végétaux à la distillerie JM .. 38
Figure 14 : Filtre planté d’Heliconia de la distillerie JM .. 39
Figure 15 : Synoptique de la filière traitement des effluents de la distillerie JM 42
Figure 16 : Bassin d’aération de la distillerie... 42
Figure 17 : Synoptique de la filière de traitement de la distillerie La Mauny 44
Figure 18 : Lagune A de la distillerie La Mauny .. 44
Figure 19 : Lagune B de la distillerie La Mauny, 2020 .. 45
Figure 20: Site de traitement des vinasses... 47
Figure 21 : Cuves de méthanisation de Saint James ... 48
Figure 22 : lagune 1 de la distillerie Neisson... 50
Figure 23 : Lagune 2 de la distillerie de Neisson ... 50
Figure 24 : Synoptique de traitement de la distillerie du Simon.. 50
Figure 25 : Dégrilleur de la distillerie du Simon ... 51
Figure 26 : Photo des turbines de la lagune 1 de la distillerie du Simon .. 52
Introduction

En Martinique, la filière canne-sucre-rhum revêt une importance économique, historique et sociale forte. Le marché du rhum martiniquais représente environ 230 millions d’euros de chiffre d’affaires en 2016 (source : Institut des Ressources Environnementales Et du Développement Durable). Plus de 80% de la production de rhum est exportée en France Métropolitaine et dans une centaine de pays dans le monde. C’est également le deuxième produit agro-industriel le plus exporté en Martinique (25.1%).[1] Concernant la production de sucre, ce sont environ 2 300 tonnes qui sont produites chaque année par la sucrerie le Galion.[2]

La filière compte environ 3 500 emplois dont 1 500 dans le secteur du rhum. C’est 36 % des emplois du secteur de l’agriculture qui sont dédiés à la canne à sucre.

La Martinique se projette également sur la scène internationale car elle fait de la France le seul pays du monde à bénéficier de l’Appellation d’Origine Contrôlée « Rhum Agricole ». La Martinique est donc une actrice incontournable de la production de rhum mondiale.

En terme environnemental, la culture de la canne et la production de rhum et de sucre exercent des pressions significatives sur les milieux naturels et notamment sur les cours d’eau : utilisation de produits phytosanitaires, prélèvements d’eau, érosion des sols, rejets des usines de transformation, etc. Comme pour toutes pression, il est important de connaitre leurs origines, de les quantifier et d’estimer leur impact pour agir et concilier au mieux les activités humaines et la préservation des écosystèmes. À l’heure actuelle aucun bilan spécifique aux pressions de la filière canne-sucre-rhum et plus particulièrement des distilleries n’a été réalisé. L’ODE a déjà effectué un travail global sur l’ensemble des pressions exercées sur la Martinique dans le cadre de l’état des lieux 2019 du district hydrographique de la Martinique qui ne répond que partiellement à cet objectif. L’ODE a donc proposé un stage spécifiquement sur le sujet, comprenant les missions suivantes :

✓ Collecter des données et produire un bilan sur les rejets des distilleries et leur traitement.
✓ Produire un rapport bibliographique sur les pressions globales de l’intégralité de la filière canne/sucre/rhum sur la base des données disponibles.

Le présent rapport présente ainsi le résultat de ces missions.
I. Contexte de l’étude

A. Présentation du bassin hydrographique de la Martinique

La Martinique est une île volcanique située dans l’archipel des petites Antilles, entre les îles de Sainte-Lucie (au Sud) et de la Dominique (au Nord). Elle se situe à 7 000 km de la France hexagonale, et à 120 km de la Guadeloupe. Sa superficie est de 1 128 km\(^2\) (64 km sur 24 km). Son point culminant est la Montagne Pelée qui se trouve à 1 397 m d’altitude. La Martinique possède un relief montagneux, avec de nombreux mornes.

Le réseau hydrographique de la Martinique compte 161 rivières dont 70 cours d’eau principaux. Il n’est pas homogène sur le territoire en raison des disparités de pluviométrie. En effet, la majorité des rivières coulent au nord de l’île et sont concentrées sur seulement 7 principaux bassins versants comme le montre la figure 1.

Deux principaux types de rivières coulent sur le territoire. D’une part les rivières du nord qualifiées de "rivière montagne". Ces rivières sont les cours d’eau majeurs présentant un régime torrentiel en raison du relief montagneux. D’autre part, les rivières du sud pourraient être qualifiées de "rivière de plaine et de mangrove". Ce sont des cours d’eau de tailles beaucoup moins importantes. Du fait du relief plus doux, les pentes sont plus faibles. Elles prennent place le plus souvent dans des vallées élargies avec des bassins versants moins allongés.

C’est donc dans le nord que la majorité des captages d’eau potable se trouvent. En 2017, ce sont environ 43 000 000 m\(^3\) d’eau qui ont été prélevés afin d’alimenter la population en eau potable. L’eau en Martinique provient majoritairement des rivières. Cette eau prélevée dans les rivières représente 94 % de l’eau utilisée. Les 6 % restants proviennent des forages peu nombreux en Martinique. Le tableau suivant résume la situation hydrique de l’île :

Tableau 1 : Situation hydrique de la Martinique (Revision de l’Etat des Lieux ODE, 2019)

<table>
<thead>
<tr>
<th>Captages</th>
<th>Débits (m3/j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eaux superficielles</td>
<td>20</td>
</tr>
<tr>
<td>Eaux souterraines</td>
<td>16</td>
</tr>
<tr>
<td>TOTAL</td>
<td>36</td>
</tr>
</tbody>
</table>

Cette situation peut entraîner des problèmes lors du carême (période de sécheresse en Martinique) qui a lieu de janvier à mi-avril. En effet, la Martinique connaît deux saisons fondamentales, le carême de février à avril avec des températures avoisinant les 28 à 30 degrés et peu de pluie. Et l’hivernage, de juillet à octobre dit « la saison des pluies », les températures sont plus élevées, mais le temps également plus humide avec des averses plus nombreuses. Durant le carême, le niveau des rivières peut diminuer fortement, entraînant une pénurie d’eau dans certains secteurs.

En supplément de cette forte pression prélevement, les rivières de Martinique sont soumises à de nombreuses autres pressions anthropiques en raison d’un fort étalement urbains et agricole : rejets de l’assainissement collectif et non collectif, rejets industriels, rejets agricoles, érosions des sols, etc. Les portions de rivières exemptes de pressions anthropiques sont cantonnées aux zones montagneuses naturelles des pitons du Carbet et de la Montagne pelée, préservé de toute urbanisation et agriculture.
FIGURE 1 : CAPTAGES D’EAU POUR LA PRODUCTION D’EAU POTABLE EN MARTINIQUE (ARS 2004)
B. Présentation de la filière canne-sucre-rhum

La filière canne-sucre-rhum est la deuxième filière agricole la plus populaire et importante en Martinique. D’après l’IREEDD (Institut des Ressources Environnementales Et du Développement Durable), le chiffre d’affaires de la filière est estimé à 18,6 M € en 2016. La canne à sucre est l’élément primordial de cette filière. Elle représente une SAU (Surface Agricole Utile) de 3 891 hectares soit 18,2 % de la SAU totale (22 000 hectares). Cette culture s’adapte particulièrement bien au climat de la Martinique et est la deuxième la plus importante après la banane.

![Parcellaire agricole de la Martinique](image)

Figure 2 : Parcellaire agricole de la Martinique (Révision de l'Etat des lieux 2019, ODE Martinique)

La canne à sucre et la banane représentent environ la moitié de la SAU de la Martinique. Ces deux principales productions induisent alors une diminution du nombre d’exploitations, mais en revanche, une augmentation de la taille des exploitations.

La filière canne-rhum-sucre compte 3500 emplois environ dont 1500 dans le secteur du rhum. 36% des emplois du secteur de l’agriculture sont dédiés à la canne à sucre.

Concernant le secteur du rhum, il s’impose majoritairement dans la filière canne-sucre-rhum. Selon la DAAF (Direction de l’Alimentation, de l’Agriculture et de la Forêt), pour environ 220 000 cannes à sucre récoltées, 65 % seront utilisées afin de produire du rhum, et les 35 % restants afin de produire du sucre.

La filière du rhum représente environ de 230 millions d’euros dans l’économie locale. Mais les volumes récoltés, bien qu’en progression, sont encore très inférieurs aux besoins industriels qui s’élèvent à 300 000 tonnes.

Le tableau ci-dessous montre quelques chiffres caractéristiques de la filière.
TABLEAU 2 : PARAMETRES DE LA PRODUCTION DE CANNE A SUCRE (DAAF MEMENTO AGRICOLE 2017)

<table>
<thead>
<tr>
<th></th>
<th>Année 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface déclarée (ha)</td>
<td>3 840</td>
</tr>
<tr>
<td>Moyenne des rendements surface (tonne/ha)</td>
<td>58,8</td>
</tr>
<tr>
<td>Production livrée (tonne)</td>
<td>Production totale : 225 951 Livraisons distilleries : 143 000</td>
</tr>
<tr>
<td>Production de rhum (HAP)</td>
<td>101 945</td>
</tr>
<tr>
<td>Production de sucre (tonne)</td>
<td>2 291</td>
</tr>
<tr>
<td>Prix moyen payé aux producteurs (€/tonne)</td>
<td>82,60</td>
</tr>
</tbody>
</table>

En Martinique, la culture de la canne à sucre est présente principalement sur les bassins versants dans le nord-est de la Martinique (Basse pointe, Sainte Marie, La Trinité), sur son versant sud-ouest (Lamentin, Ducsos, Rivière salée) ainsi que sur le secteur de Saint-Pierre car elle nécessite beaucoup d’eau. La répartition des parcelle cultivées est présentée ci-dessous. Il est remarqué qu’elle n’est pas homogène.

FIGURE 3 : RÉPARTITION DES ZONES AGRICOLES (REVISION DE L’ÉTAT DES LIEUX 2019, ODE MARTINIQUE)
Concernant le secteur de la transformation de la canne, la Martinique compte neuf distilleries (le Galion étant la seule distillerie à produire du rhum industriel/rhum de mélasse) et une sucrerie.

Leur localisation est la suivante :

- 6 distilleries au nord de l'île
 - Neisson (Carbet)
 - Depaz (Saint-Pierre)
 - JM Crassou de Médeuil (Macouba)
 - Saint James (Sainte-Marie)
 - Le Galion (La Trinité)
 - Habitation Beau Séjour
- 1 distillerie au centre
 - La Favorite (le Lamentin)
- 3 distilleries au sud
 - A1710 (François)
 - Simon (François)
 - La Mauny (Rivière Pilote)

La sucrerie du Galion est localisée au Nord côté Atlantique (Trinité).

Il existe aussi des négociants-éleveurs qui ne distillent pas, mais produisent leurs propres rhums qui sont distillés dans une des structure citées précédemment (Rhum Clément, Rhum HSE).

Plus globalement :

Le groupe BBS produit le rhum Trois Rivière, La Mauny et Duquesne sur le site de la distillerie La Mauny

Le groupe La Martiniquaise produit sur les sites de Depaz et Saint-James, les rhums suivants : Depaz, Saint-James, Dillon, Bally, Madkaud et Hardy.

La distillerie du Simon produit le Rhum HSE (Habitation Saint Etienne)

La distillerie JM produit les rhums JM et Clément.

La carte suivante présente les distilleries présentes en Martinique.
Il est important d’identifier le rôle de chaque acteur de la filière rhum. L’organigramme suivant explique les différents liens et position de chaque acteur en Martinique :

FIGURE 4 : POSITION DES DISTILLERIES DE LA MARTINIQUE (OBSERVATOIRE DE L’EAU, 2020)
Figure 5 : Organigramme des distilleries de la Martinique, CTCS-Martinique
La filière canne-sucre-rhum compte des organisations professionnelles qui sont :

- Le **CODERUM** (Comité Martiniquais de Défense et d’Organisation du Rhum), structure qui regroupe l’ensemble des distillateurs de la Martinique afin de pouvoir favoriser les échanges entre ces derniers.

- Le **SDAORAM** (Syndicat de Défense de l’Appellation d’Origine « Rhum Agricole Martinique), syndicat chargé de la production de l’AOC du rhum agricole de Martinique.

- Le **CIRT-DOM** (Conseil Interprofessionnel du Rhum Traditionnel des DOM), spécialisée dans le secteur d’activité des distilleries fonctionnant par adhésion volontaire.

- Le **CTCS – Martinique** (Centre Technique de la Canne et du Sucre de la Martinique), consiste à coordonner les actions de recherche et de développement, ainsi que le contrôle des productions de la filière canne-sucre-rhum.

- **CANNE-UNION**, Association des Producteurs de Cannes.

- La **CUMA de « Malgré Tout »**, Coopérative d’utilisation de matériel agricole qui regroupe 69 adhérents exploitant de petites surfaces.
C. Collecte des données et visites de terrains

Un travail de collecte de données auprès des acteurs locaux et de prise de contact auprès des distillerie a été mis en œuvre afin de réunir le maximum d’éléments sur la filière et particulièrement les traitements des vinasses mis en œuvre par les distilleries de Martinique.

Des demandes de transmission de données ont été réalisées en août 2020 et sont présentées dans le tableau suivant :

TABLEAU 3 : DEMANDE DE DONNEE REALISEES AU COURS DU STAGE

<table>
<thead>
<tr>
<th>Organisme contacté</th>
<th>Date de la demande</th>
<th>Données demandées</th>
<th>Réponse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creocean (bureau d’étude)</td>
<td>10 Août</td>
<td>Rejets des distilleries</td>
<td>Obtention des données des rejets des distilleries 2017 effectués par la DEAL</td>
</tr>
<tr>
<td>CTCS</td>
<td>10 Août</td>
<td>Production de canne à sucre</td>
<td>En attente de réponse</td>
</tr>
<tr>
<td>CACEM (Communauté d’Agglomération Centre Martinique)</td>
<td>12 Août</td>
<td>Pressions de la filière canne-sucré-rhum</td>
<td>Documentation sur le sujet obtenue ainsi que le contrat de la baie de Fort-de-France</td>
</tr>
<tr>
<td>Chambre de l’Agriculture</td>
<td>12 Août</td>
<td>Production de la filière canne à sucre</td>
<td>Pas de données</td>
</tr>
<tr>
<td>CODERUM</td>
<td>12 Août</td>
<td>Production de la filière rhum</td>
<td>Données confidentielles</td>
</tr>
<tr>
<td>DAAF (Direction de l’Alimentation, de l’Agriculture et de la Forêt)</td>
<td>12 Août</td>
<td>Production de la filière canne à sucre</td>
<td>Toutes les données sont à disposition sur le site internet</td>
</tr>
<tr>
<td>CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement)</td>
<td>12 Août</td>
<td>Pressions de la filière canne à sucre</td>
<td>Plusieurs rapports de stage réalisés sur la thématique du bassin versant du Galion</td>
</tr>
<tr>
<td>DEAL (Département de l’Environnement et de l’Aménagement du Littoral)</td>
<td>13 Août</td>
<td>Rejets et arrêtés des distilleries</td>
<td>Les arrêtés des distilleries ont été obtenus sur place</td>
</tr>
<tr>
<td>Distillerie JM</td>
<td>16 Août</td>
<td>Analyse des rejets de la distillerie</td>
<td>Une analyse détaillée de leur rejet de vinasse sur toute la campagne 2019</td>
</tr>
<tr>
<td>Distillerie La Mauny</td>
<td>17 Août</td>
<td>Données sur la production et rejets</td>
<td>Données sur la production 2019 et sur leurs rejets aussi</td>
</tr>
<tr>
<td>Distillerie Le Simon</td>
<td>16 Août</td>
<td>Données sur la production et le traitement des rejets</td>
<td>Visite réalisée le 26/08</td>
</tr>
<tr>
<td>Distillerie Neisson</td>
<td>17 Août</td>
<td>Données sur la production et le traitement des rejets</td>
<td>Visite réalisée le 27/08</td>
</tr>
<tr>
<td>Distillerie Depaz</td>
<td>23 Août</td>
<td>Données sur la production et rejets</td>
<td>Fermé aux visites durant le mois d’août</td>
</tr>
<tr>
<td>Distillerie Saint-James</td>
<td>24 Août</td>
<td>Données sur la production et rejets</td>
<td>Visite de la distillerie réalisée le 4 septembre</td>
</tr>
<tr>
<td>Distillerie La Favorite</td>
<td>25 Août</td>
<td>Données sur la production de rhum</td>
<td>En attente de réponse</td>
</tr>
</tbody>
</table>
La DEAL a pour mission de collecter les données réglementaires sur les rejets des distilleries en Martinique.

Plusieurs visites des distilleries ont également permis d’obtenir des données sur le traitement mis en place ainsi que quelques données sur les rejets de vinasse. Afin d’obtenir des informations sur les distilleries fermées aux visites, une prise de contact a été effectuée par téléphone ou mail.

5 distilleries ont pu être visitées durant la période de stage : JM, La Mauny, Le Simon, Neisson, Saint-James.

II. Les pressions de la filière

A. Les pressions majeures de la culture de la canne à sucre sur les milieux aquatiques

Il est important de pouvoir identifier les pressions majeures que la filière exerce sur le milieu aquatique afin de mieux cerner les impacts potentiels et proposer des solutions visant à améliorer la situation.

Les pressions mentionnées dans ce rapport sont celles apparaissant, a priori, comme étant les plus importantes sur les milieux aquatiques.

1. Les engrais
 a) L’azote

La culture de la canne à sucre génère une pression azote sur le milieu aquatique liée à l’ajout d’engrais chimiques ou naturels dans les sols. Cela peut créer une émission excessive d’azote dans les cours d’eau et les eaux souterraines par ruissellement des eaux pluviales et par lixiviation des sols.

Ces émissions excessives peuvent engendrer un phénomène d’eutrophisation des eaux (prolifération excessive d’algues et perte d’oxygène dans le milieu) menaçant l’équilibre biologique des milieux.

Un outil nommé PRESSAGRIDOM et permettant d’évaluer la pression agricole « azote » sur les eaux superficielles a été développé par le CIRAD. Il est spécifiquement conçu pour les DOM et a été utilisé dans le cadre de l’état des lieux du bassin hydrographique de la Martinique réalisé par l’ODE en 2019.

Le principe de l’outil est de calculer un indicateur de pression (azote et pesticide) en prenant en compte les données quantitatives récentes, les données géophysiques et climatiques locales, avec comme unité de base la parcelle et un type de culture associé. Par calcul intégrateur, l’agrégation des quantités lixiviiées sur chacune des parcelles cultivées situées sur une masse d’eau est représentative de la pression azotée et en pesticides à l’échelle de cette masse d’eau.
La balance azotée (BA) correspond à la somme des apports en azote (apports minéraux, apports organiques, apports par le sol) à laquelle on soustrait les prélèvements en azote par l’exportation des cultures.

\[\text{BA} = (\text{Norg} + \text{Nmin}) \times \text{CAU} + \text{Nsol} - \text{Nprel} \]

TABLEAU 4 : PRESENTATION DES DIFFERENTS APPORTS D’AZOTE (REVISION DE L’ETAT DES LIEUX 2019)

<table>
<thead>
<tr>
<th></th>
<th>Apport d'azote par la matière organique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norg</td>
<td>Apport d'azote minéral par les engrais</td>
</tr>
<tr>
<td>Nmin</td>
<td>Fourniture en azote du sol</td>
</tr>
<tr>
<td>Nsol</td>
<td>Quantité d’azote prélevée par les plantes et exportée à la récolte</td>
</tr>
<tr>
<td>Nprel</td>
<td>Coefficient apparent d’utilisation de l’engrais minéral</td>
</tr>
</tbody>
</table>

La carte ci-dessous présente la pression azotée calculée par PRESSAGRIDOM et exercée par la totalité des cultures en Martinique. À l’échelle des masses d’eau, la quantité moyenne d’azote lixiviée dépend fortement du bassin versant, des surfaces cultivées associée à la pluviométrie.

La quantité d’azote lixiviée estimée est beaucoup plus importante dans le nord de la Martinique malgré des surfaces de culture importantes également dans le Sud. Ainsi, cela n’est uniquement lié à la surface cultivée. La topographie plus montagneuse et le climat de l’île plus humide dans le Nord accentue le phénomène de lixiviation. C’est donc en raison du gradient pluviométrique de la Martinique que l’on observe ce résultat.

Pour la canne à sucre, l’outil calcule une balance azotée de 57 kg/ha. Cela signifie que dans les sols des cultures de canne à sucre, l’azote disponible (azote apporté + azote du sol) est généralement plus élevé que l’azote prélevé par les plantes. La culture de la canne concerne 3840 hectares et se trouve en grande partie dans le nord et le centre qui présentent une pluviométrie importante (et donc un phénomène de lixiviation également important). Ainsi, il est probable qu’elle exerce une véritable pression azote sur le milieu aquatique du fait de l’excès d’azote qui se retrouve lixivié.
Figure 6 : Pression azote sur les bassins versants de la Martinique, révision de l’état des lieux 2019
b) Le phosphore

Le phosphore est un des trois éléments indispensables à la croissance des plantes (avec l’azote et le potassium). Dans les sols, il se trouve sous deux formes : organique ou minéral. Les plantes telles que la canne à sucre assimilent les phosphates naturels présents dans le sol afin de se développer et d’avoir une meilleure résistance à la sécheresse. Tout comme l’azote, l’excès de phosphore peut entraîner un phénomène d’eutrophisation des milieux aquatiques.

Selon l’étude « Quelques caractéristiques de sols des zones bananières de la Martinique » (Guillemot et al., 1973), la répartition en phosphore des sols est très hétérogène. Il existe des sols très concentrés en phosphore tel que le bassin versant de Basse Pointe et d’autres terres très appauvries tel que la zone de Saint-Joseph. Cependant, les résultats sont difficilement interprétables en raison de la capacité des plantes à fixer les phosphates présents dans le sol par déficience magnésienne.

L’usage d’engrais riche en phosphore ainsi que les rejets des distilleries sont des sources d’apports phosphorées en milieux naturels.

Seulement trois données de rejet de phosphore sont disponibles parmi les données d’autosurveillance récupérées par la DEAL.

TABLEAU 5 : EMISSIONS PHOSPHORE (DEAL 2017)

<table>
<thead>
<tr>
<th>Industrie</th>
<th>Emissions phosphore 2017 (kg/an)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Le Galion</td>
<td>9</td>
</tr>
<tr>
<td>Distillerie Depaz</td>
<td>245</td>
</tr>
<tr>
<td>Distillerie du Simon</td>
<td>201</td>
</tr>
</tbody>
</table>

2. Les pesticides

Pour la culture de la canne à sucre, les produits phytosanitaires appelés plus communément « pesticides » sont utilisés afin de lutter contre les rongeurs, insectes ravageurs mais également les parasites. Ils sont soumis au Code de la Santé Publique. Les pesticides dans la culture de la canne à sucre sont également utilisés en tant que désherbant afin de maitriser les mauvaises herbes.

On distingue 2 types de transfert des pollutions agricoles vers les eaux : les pollutions ponctuelles et les pollutions diffuses.

Les pollutions ponctuelles consistent en des rejets directs dans le milieu sur une zone précise. La cause peut être accidentelle ou chronique. Par exemple, le stockage des produits n’est pas adéquat, le rinçage du matériel n’est pas fait correctement entrainant une contamination, les effluents excédentaires sont déversés en bout de champs.

Les pollutions diffuses sont le résultat de transferts réalisés entre les parcelles traitées et les nappes phréatiques ou les cours d’eau majoritairement par ruissellement ou infiltration des eaux de pluie.
Ces transferts entrainent une pression phytosanitaire dont l’impact éco-toxicologique sur les milieux aquatiques est peu connu à l’heure actuelle et difficile à évaluer.

La rémanence de certains pesticides est si forte qu’ils sont toujours présents dans le milieu alors qu’ils ne sont plus utilisés depuis plusieurs années (le chlordécone, le DDT et ses produits de dégradation ainsi que le lindane).

Il est à noter qu’une diminution de l’utilisation des pesticides en Martinique est observée. Cela est en partie liée à l’évolution du cadre réglementaire :

- Loi Grenelle interdisant l’épandage aérien datant de 2010 ;
- Loi « Labbé » en 2014, interdisant aux personnes publiques d’utiliser des produits phytopharmaceutiques pour l’entretien des espaces verts ;
- 1er janvier 2019, Interdiction de la vente, utilisation et de détention de produits phytopharmaceutiques pour un usage non professionnel ;

Afin d’estimer la pression Pesticide sur les cours d’eau, L’ODE a mis en place un suivi mensuel de 165 substances phytosanitaires sur 28 stations de mesures réparties sur les cours d’eau de Martinique. La carte des stations des réseaux de suivi de la qualité chimique des cours d’eau est exposée ci-dessous :
Figure 7 : Localisation des différentes stations de suivi en cours d’eau de l’ODE (Rapport Pesticide de l’ODE 2019)
Le rapport de suivi de l’année 2019 fait ressortir les éléments suivants : Sur les 165 molécules recherchées par l’ODE, 40 molécules ont été identifiés par les stations de suivi et quantifiées au moins une fois en 2019. Les plus fortes concentrations totales toutes molécules confondues ont été quantifiées sur les stations Amont Bourg Basse-Pointe (7,43 µg/L) et Pont RN Rouge (7,06 µg/L). Ces fortes valeurs proviennent de pics de concentration en chlordécone de 6,03 µg/L sur la station Amont Bourg Basse-Pointe et de 6,85 µg/ sur la station Pont RN Rouge. Les deux rivières se trouvent au Nord-Atlantique de la Martinique, là où se trouvent d’importante culture de bananerais. Ce pesticide n’a par contre pas été utilisé dans la culture de la canne à sucre.

En ce qui concerne les pesticides utilisés dans la culture de la canne à sucre on retrouve dans les cours d’eau en 2019 les molécules suivantes :
- Glyphosate (concentration max de 0,6 µg/l) et son métabolite l’AMPA : Il s’agit de l’herbicide le plus utilisé dans les champs de canne à sucre
- 2,4-D
- Mésotrione
- Diuron (interdit)
- Mélachlorone (interdit) et son métabolite S-mélachlorone
- Carbendazime (interdit)
- Atrazine (interdit)

De 2011 à 2019, la concentration moyenne globale en produits phytopharmaceutiques dans les cours d’eau a légèrement diminué. Cette lente diminution semble corrélée à l’évolution de la réglementation.

3. Les prélèvements d’eau
Dans la filière canne sucre rhum, la majorité des acteurs, qu’ils soient agriculteurs, distilleries ou sucrerie ont des besoins d’eau importants nécessaire à leur production. Depuis 2005, l’ODE collecte une redevance sur le prélèvement de la ressource en eau. Sont concernés toutes personnes publiques ou privées qui prélevent de l’eau dans le milieu naturel (que ce soit nappe ou cours d’eau) à des fins tels que l’alimentation en eau potable, l’irrigation ou d’autres secteurs économiques. Les taux plafonnés sont les suivants :
- Alimentation en eau potable : 0,05 €/m³
- Irrigation des terres agricoles : 0,005 €/m³

Les chiffres des volumes d’eau prélevés dans le milieu naturel en Martinique en fonction des usages sont les suivants :

| TABLEAU 6 : VOLUME D’EAU PRELEVES EN MILIEU NATUREL (REVISION DE L’ETAT DES LIEUX, 2019) |
|---------------------------------|--------|--------|--------|
| Années | 2015 | 2016 | 2017 |
| Usage domestique | 43 147 282 | 41 932 833 | 42 767 021 |
| Usage agricole | 15 004 859 | 10 709 245 | 7 799 646 |
| Autres usages | 1 796 015 | 1 739 060 | 1 559 236 |
| Volume total | 59 216 606 | 54 381 138 | 52 125 903 |

L’usage domestique est le secteur qui effectue le plus de pression sur le milieu naturel. Il concerne la production d’eau potable. L’usage agricole qui comprend surtout l’irrigation des cultures a nécessité
en 2017 plus de 7 800 000 de m³. Selon la Révision de l'état des lieux de l’ODE, c’est 15% d’eau prélevé en Martinique qui est destiné à un usage agricole. Les données spécifiques à la filière de la canne à sucre n’ont pas encore pu être extraites.

4. Pression érosion

Les cultures, selon leur configuration, peuvent provoquer ou accentuer le phénomène d’érosion des sols. Il peut provoquer :

- Des mouvements de terrain ;
- Des altérations hydromorphologiques des milieux aquatiques (creusement du lit de rivière, incision de cours d’eau) ;
- Dégradation de la qualité de l’eau, provoquée par les matières en suspension (MES) (Érosion des sols causée par les pluies transporte un flux de particules et peut produire un envasement).

Selon l’étude de l’impact de l’érosion de www.eaufrance.fr, ce phénomène d’érosion se produit en lorsque le couvert végétal est faible. Il est également accentué lorsque les plantations et les chemins en terre sont réalisées dans le sens de la pente car cela favorise les écoulements rapides.

La canne à sucre est une plante cultivée en moyenne sept ans avant de devoir réaliser des boutures à nouveau. Durant ces sept ans, le couvert végétal des champs est assez dense, celui-ci permet alors une bonne couverture et une bonne protection des sols contre l’érosion. Le phénomène d’érosion est le plus accentué au cours de la première période de plantation de la canne. Le couvert de feuilles prend environ 5 mois avant de commencer à être dense. Les épisodes pluvieux agressent donc le sol durant cette période.

L’érosion hydrique peut ainsi être limitée par la couverture végétale mais aussi par la plantation en courbes de niveau (méthode de Van Dillewijn) (Contexte de l’agriculture martiniquaise, Pascal SAFFACHE). Cependant, cette solution a de grosses difficultés à s’imposer en Martinique, du fait de son coût et des conditions orographiques.

Selon le rapport de synthèse de la cartographie de vulnérabilité des sols à l’érosion hydrique en Martinique réalisé par la société IGED SASU en 2013, seul 10% du territoire est exposé fortement à l’érosion hydrique. Les masses d’eau continentales qui sont fortement touchées se trouvent au nord-Atlantique de l’île ainsi qu’au niveau de la baie du Galion. Cette dernière est fortement touchée par l’érosion en raison de la présence forte de surfaces agricoles qui entraînent une faible couverture forestière. De même pour le nord-Atlantique qui a une part relativement importante de son territoire occupée par des champs de canne ou des bananeraies. Les pressions sont également fortes sur ce versant de l’île en dépit de sa couverture forestière plus importante que celle de la baie du Galion.

Il faut aussi noter que traditionnellement les rangs de canne étaient plutôt plantés selon les courbes de niveau afin notamment de limiter le ravinement mais que désormais pour le travail des récolteuses mécaniques ils sont plantés dans le sens d’écoulement. Ce qui peut aggraver le ravinement des sols.

5. Pression sur la consommation énergétique

De façon globale, le secteur canne à sucre consommerait environ 4000 tep/an (tonne d’équivalent pétrole/an) soit 168 700 GJ/an. Cette consommation d’énergie prend en compte l’énergie du carburant non routier, carburant routier ainsi que l’électricité consommée par la filière canne à sucre. A noter que la vapeur est produite localement en brulant les résidus de bagasse.

La consommation d’énergie primaire de la Martinique est de 6 660 GWh. Concernant le secteur de l’agriculture, celui-ci consomme 440 GWh, soit 2 % de la consommation d’énergie finale.
III. Les distilleries

A. Les pressions majeures des distilleries sur les milieux aquatiques

Les distilleries ainsi que la sucrerie du Galion sont classées ICPE (Installations Classées pour la protection de l’Environnement) car elles sont susceptibles d’avoir des rejets importants dans les milieux naturels (dont des rejets de particules dans l’air). Une ICPE est une installation exploitée ou détenue par toute personne physique ou morale, publique ou privée, qui peut présenter des dangers pour la commodité des riverains, la santé, la sécurité, la salubrité publique, l’agriculture, la protection de la nature et de l’environnement, la conservation des sites et des monuments. Afin de réduire les risques et les impacts relatifs à ces installations, la loi définit et encadre de manière relativement précise les procédures relatives aux ICPE ainsi que la manière dont ces installations doivent être gérées.

Les ICPE doivent alors respecter les normes et arrêtés spécifiques à leurs statuts.

Selon la DEAL, la Martinique compte 29 ICPE incluant les neuf distilleries et une sucrerie (Le Galion produisant également du rhum industriel).

1. Rejets des eaux de refroidissement

Les eaux de refroidissement servent à refroidir les colonnes à distiller Leur rejet n’apparaît pas comme étant une pression majeure exercée par les distilleries. Il semble tout de même important d’étudier tous les rejets aqueux produits par ce secteur.

Elles présentent un risque d’impact sur le milieu naturel si elles sont rejetées directement après usage car leur température est très élevée.

Le rejet et le circuit des eaux de refroidissement de la Mauny a pu être visité. La distillerie a fait l’acquisition d’un refroidisseur adiabatique afin de limiter les rejets de ses eaux de refroidissement. Le système est présenté dans la figure ci-dessous. L’eau chaude rentre dans le refroidisseur adiabatique par le haut et une fois refroidit, ressort par le bas puis est injectée dans la colonne. Après refroidissement, l’eau chaude sortant de la colonne à distiller est ensuite évacuée par les canalisations afin d’y être stockée dans un tank container que l’on voit sur la photo ci-dessous. Le système peut fonctionner en circuit fermé. C’est-à-dire qu’environ 40% de l’eau refroidit est réinjectée dans le refroidisseur et les colonnes de distillation afin de refroidir à nouveau les colonnes. L’autre partie de l’eau non réinjectée est quant à elle rejetée en rivière après une période de stockage qui lui aura permis de baisser en température.
Figure 8 : Principe de fonctionnement d’un refroidisseur adiabatique

Figure 9 : Refroidisseur adiabatique de La Mauny
Rejet des vinasses
Dans les distilleries, les rejets aqueux les plus surveillés par la DEAL ainsi que l’OFB sont les rejets des vinasses. La vinasse est un sous-produit de la distillation du rhum. Dans la colonne de distillation, les vapeurs recueillies en haut de colonnes seront utilisées afin de produire le rhum, le reste du jus de canne fermenté se retrouve alors en bas de la colonne de distillation et constitue la vinasse. Cette solution présente un pourcentage d’alcool inférieur à 0,04 %. Elle est connue pour être à forte teneur en potassium et en matière organique. Elle peut donc engendrer une pollution importante des eaux et des sols si elle est rejetée tel quel. La vinasse nécessite donc obligatoirement un traitement avant rejet en milieu naturel. Depuis l’arrêté ministériel du 2 février 1998 numéro NOR : ATEP9870017A, un traitement des vinasses avec un rendement épuratoire sur les pollutions carbonées au moins égal à 95 % est obligatoire. Les pressions exercées par les rejets vinasses sur l’environnement sont les suivants :
- Un apport excessif en potassium dans le milieu.
- Des émanations de gaz provoquant une odeur désagréable, lors du traitement des vinasses ou de son épandage.
- Un pH compris entre environ 4 et 6 qui peut acidifier le milieu récepteur.
- Une concentration en MES élevée (environ 3 000 mg/L), un rejet sans traitement dans les rivières peut saturer le milieu et générer des dépôts gênant l’écoulement des eaux.
- Une concentration élevée en matière organique qui peut générer un déséquilibre du milieu nature, une perte d’oxygène, une prolifération d’algue, de bactéries ou de champignons, une odeur nauséabonde.

Les rejets de vinasses sont repartis tel quel (on estime que la partie des vinasses traités rejetées par Saint-James est comptabilisé dans la partie milieu marin, étant donné la proximité entre le rejet en rivière et l’embouchure) :
- 36 % rejetées en rivière ;
- 28 % rejetées en mer ;
- 36 % épandues dans les champs.

Afin de connaitre la composition des vinasses dans le but d’appliquer un traitement efficace à cet effluent, plusieurs études ont été menées.

Une étude de l’INRA (Institut National de la Recherche Agronomique) a été réalisée en 2009 dans le cadre de la mise à jour de demande d’autorisation d’exploiter de la distillerie DEPAZ. D’autres paramètres ont été mesurés par le CTCS sur les vinasses. Les données ont été mesurées directement sur les vinasses brutes en sortie des colonnes à distiller.

Tableau 7 : Caractérisation des vinasses par l’INRA 2009

<table>
<thead>
<tr>
<th>Données INRA</th>
<th>Valeurs mesurées</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azote total</td>
<td>150 mg/L</td>
</tr>
<tr>
<td>Azote NH₄</td>
<td>20 mg/L</td>
</tr>
<tr>
<td>pH</td>
<td>3.3</td>
</tr>
<tr>
<td>Température</td>
<td>80° à 90°</td>
</tr>
<tr>
<td>Alcool</td>
<td>0.02° à 0.1°</td>
</tr>
<tr>
<td>Polyphénols</td>
<td>700 mg/L</td>
</tr>
<tr>
<td>Potassium</td>
<td>1 g/L</td>
</tr>
<tr>
<td>Matières sèches</td>
<td>11 g/L</td>
</tr>
<tr>
<td>Matières minérales</td>
<td>3 g/L</td>
</tr>
</tbody>
</table>
Les caractéristiques physiques et chimiques des vinasses varient considérablement. Cela peut s’expliquer par les conditions de fermentation et de distillation différentes d’une distillerie à une autre. De plus, les apports de canne à sucre sont différents dans chaque distillerie en fonction de la variété de la canne, ainsi que de sa teneur en sucre. Dans tous les cas, la valeur de la demande chimique en oxygène est très forte, ceci atteste bien de la forte présence de matière organique dans les vinasses des distilleries.

Une estimation de la production de vinasse pour chaque distillerie a été réalisée dans le cadre de ce rapport. Cette estimation se base sur les données de cinq distilleries (Le Simon, La Mauny, Depaz, Neisson, JM). Elles ont fourni à l’ODE leurs tonnages de canne à sucre ainsi que leurs productions de vinasse. Il a alors été calculé qu’en moyenne, le rapport entre le tonnage de canne exploité et la production de vinasse est de 0,75. La production de vinasse des autres distilleries inconnues a donc pu être estimée à partir de leur tonnage de canne à sucre. Le tableau ci-dessous présente les chiffres de la production de vinasse des distilleries de Martinique. Lorsque la valeur est estimée, cela est indiqué par un astérisque.

Tableau 8 : Caractérisation des vinasses par le CTCS en 2009

<table>
<thead>
<tr>
<th>Données CTCS</th>
<th>Valeurs mesurées</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCO</td>
<td>18 000 à 24 000 mg/L</td>
</tr>
<tr>
<td>DBO</td>
<td>2 600 à 3 600 mg/L</td>
</tr>
<tr>
<td>MES</td>
<td>3 700 à 5 600 mg/L</td>
</tr>
</tbody>
</table>

Tableau 9 : Production de vinasse des distilleries de la Martinique

<table>
<thead>
<tr>
<th>Distillerie</th>
<th>Tonnage de canne à sucre tonne/an</th>
<th>Production de vinasse en m³/an (*valeur estimée)</th>
<th>Source de données de vinasse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Le Simon</td>
<td>36 000</td>
<td>45 000</td>
<td>Visite 2020</td>
</tr>
<tr>
<td>La Mauny</td>
<td>25 000</td>
<td>35 500</td>
<td>Visite 2020</td>
</tr>
<tr>
<td>JM</td>
<td>22 800</td>
<td>23 000</td>
<td>Visite 2020</td>
</tr>
<tr>
<td>Saint-James</td>
<td>40 000</td>
<td>50 000*</td>
<td>Estimation 2020</td>
</tr>
<tr>
<td>La Favorite</td>
<td>7 600</td>
<td>10 200*</td>
<td>Estimation 2020</td>
</tr>
<tr>
<td>Depaz</td>
<td>14 000</td>
<td>21 000</td>
<td>Données demande d’autorisation 2010</td>
</tr>
<tr>
<td>Neisson</td>
<td>3 500</td>
<td>5 000</td>
<td>Estimation du bureau d’étude Caraïbes Environnement en 2000</td>
</tr>
<tr>
<td>A1710</td>
<td>Non déterminé</td>
<td>Non déterminé</td>
<td></td>
</tr>
<tr>
<td>Le Galion</td>
<td>80 000</td>
<td>Non déterminé, Saint-James traite une partie de la vinasse du Galion</td>
<td></td>
</tr>
</tbody>
</table>

En total, les distilleries de la Martinique produisent environ 180 000 m³ de vinasse chaque année. Ces chiffres sont à utiliser avec précaution pour Saint-James et la Favorite étant donné qu’il d’agit d’estimations. De plus cela peut varier d’une année à l’autre en fonction de la production annuelle de canne et de Rhum.

Les matières en suspension (MES)
Dans le cadre de la réalisation de l’état des lieux du district hydrographique de Martinique, le bureau d’étude Creocean a collecté les quantités de MES (Matières En Suspension) émises en 2017 auprès de la DEAL (données transmises à la DEAL par les industriels). Lorsque la donnée n’était pas disponible, Creocean a estimé les quantités sur la base des seuils maximaux à respecter dans l’arrêté attribué à la distillerie.

D’autres données ont pu être recueillies dans le cadre de ce rapport durant les visites des distilleries. Elles sont majoritairement issues de l’autosurveillance des distilleries. Les analyses sont réalisées en général dans les laboratoires des distilleries.

TABLEAU 10 : CARACTERISATION DES MES LORS DES VISITES 2020

<table>
<thead>
<tr>
<th>Distillerie</th>
<th>Données MES</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distillerie La Mauny</td>
<td>Vinasses en sortie : 200 mg/L</td>
<td>Prélèvement ponctuel d’autosurveillance de la distillerie</td>
</tr>
<tr>
<td>Distillerie du Simon</td>
<td>Bassin d’aération entrée : 8220 mg/L</td>
<td>Valeur entrée : Prélèvement ponctuel d’autosurveillance de la distillerie en 2018</td>
</tr>
<tr>
<td></td>
<td>Bassin d’aération sortie : 135 mg/L</td>
<td>Valeur sortie : Analyses réalisées par la distillerie avec une moyenne de 5 jours (15/09/2017 au 20/10/17)</td>
</tr>
<tr>
<td>Distillerie JM</td>
<td>Bassin d’aération entrée : 3763 mg/L</td>
<td>Données provenant du projet Terrerhum, moyenne réalisée sur 10 jours (28/01/20 à 04/06/20)</td>
</tr>
<tr>
<td></td>
<td>Bassin d’aération sortie : 6746 mg/L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Filtre planté de végétaux entrée : 7224 mg/L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Filtre planté de végétaux sortie : 176 mg/L</td>
<td></td>
</tr>
<tr>
<td>Distillerie DEPAZ</td>
<td>Vinasse entrante : 4503 mg/L</td>
<td>Valeur entrée : Analyse du CTCS lors d’un contrôle en 2009</td>
</tr>
<tr>
<td></td>
<td>Vinasse sortante : 98 mg/L</td>
<td>Valeur sortie : Contrôle inopinée de la vinasse rejetée en 2009 par un organisme agréé</td>
</tr>
</tbody>
</table>

Les distilleries sont soumises à la déclaration des résultats d’analyse de leurs rejets sur la plateforme GEREP. La plateforme n’a pas pu être consultée durant ce stage car la demande des codes d’accès est en cours.

Toutes les données concernant les rejets des distilleries recueillies sont présentées dans le tableau ci-dessous.
<table>
<thead>
<tr>
<th>Distillerie</th>
<th>Cannes T/campagne</th>
<th>Production de rhum 55° (millions de litres)</th>
<th>Production de vinasse m3/an</th>
<th>Concentration entrante DCO (mg/L)</th>
<th>Concentration sortante DCO (mg/L)</th>
<th>Charge organique entrante DCO (Kg/an)</th>
<th>Charge organique entrante DCO (EH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Le Simon</td>
<td>36 000</td>
<td>4</td>
<td>45 000</td>
<td>20 000</td>
<td>144</td>
<td>900 000</td>
<td>20 548</td>
</tr>
<tr>
<td>St James</td>
<td>40 000</td>
<td>4,6 agricole 1,2 industriel</td>
<td>60 000</td>
<td>20 000 à 45 000</td>
<td>Pas de donnée</td>
<td>1 650 000</td>
<td>37 671</td>
</tr>
<tr>
<td>La Mauny</td>
<td>25 438</td>
<td>2,78</td>
<td>35 500</td>
<td>22 500</td>
<td>Pas de donnée</td>
<td>798 750</td>
<td>18 236</td>
</tr>
<tr>
<td>Depaz</td>
<td>31 573</td>
<td>3,16</td>
<td>32 702</td>
<td>22 253</td>
<td>Pas de donnée</td>
<td>727 718</td>
<td>16 615</td>
</tr>
<tr>
<td>La Favorite</td>
<td>4500</td>
<td>0,3</td>
<td>5 500</td>
<td>10000</td>
<td>Pas de donnée</td>
<td>55000</td>
<td>1 256</td>
</tr>
<tr>
<td>Neisson</td>
<td>3500</td>
<td>5 000</td>
<td>18 000</td>
<td>Pas de donnée</td>
<td>90000</td>
<td>2 055</td>
<td></td>
</tr>
<tr>
<td>JM</td>
<td>20 000</td>
<td>2</td>
<td>23 500</td>
<td>19798</td>
<td>272,00</td>
<td>465 253</td>
<td>10 622</td>
</tr>
</tbody>
</table>

Données Arreté Pref

Données distillerie 2020
Figure 10 : Charge entrante des distilleries et des principales STEU (ODE, 2020)
La carte ci-dessus présente les estimations des charges entrantes dans les distilleries ainsi que dans les STEU à titre de comparaison. Elle montre que les distilleries peuvent recevoir une charge du même ordre de grandeur que les STEU de Gaïnneron ou Pointe des nègres. Les distilleries peuvent donc exercer une pression considérable sur les milieux naturels, qu’ils soient aquatiques ou terrestres. Ainsi, la vinasse nécessite obligatoirement un traitement efficace avant rejet en milieu naturel.

La répartition des rejets en MES en fonction de la nature de l’activité industrielle en Martinique est présenté sur la figure 12 :

Figure 11 : répartition des rejets en MES en fonction de la nature de l’activité industrielle (État des lieux 2019, ODE)

Il est estimé que 46% des rejets en MES sont réalisés par les distilleries et la brasserie Lorraine. Il paraît donc que les pressions exercées par les distilleries doivent être quantifiées le plus précisément possible.

Il est important de rappeler que la plupart de ces données sont des estimations. De plus, pour la distillerie du Simon, les rejets n’ont pas pu être estimés dans le cadre de l’état des lieux 2019. Les résultats sont donc potentiellement sous-estimés.

Les nutriments (azote et phosphore)

En exploitant les données d’autosurveillance des distilleries fournies par la DEAL dans le cadre de l’état des lieux 2019, il est estimé qu’en 2017, 7865 kg d’azote total et 1439 kg de phosphore (données de 7 ICPE) ont été rejetés en milieu aquatiques.

Il est important de souligner que la qualité des rejets des effluents s’est améliorée durant ces vingt dernières années. En 2003, la pollution des industries était rejetée directement en milieu naturel sans traitement au préalable. La charge polluante était évaluée à 923 546 EH (Équivalent-Habitant). Selon l’état des lieux de l’ODE de 2015, la charge organique des rejets liquides au milieu naturel a été réduite de 97,6 %.

Cela est dû à la mise en place d’installations de traitement ainsi qu’au renforcement des contrôles réalisés par les services de l’état. Ces contrôles sont effectués en Martinique par le Service Risques, Energie, Climat de la DEAL et par la police de l’environnement de l’Office Français de la Biodiversité.

Demande Chimique en Oxygène (DCO)

Dans le cadre de l’état des lieux 2019, la DCO des effluents rejetés par les distilleries de Martinique a été évaluée sur la base des arrêtés préfectoraux transmis par la DEAL. Ces données sont présentées dans le tableau 14 en colonne 2.

Grace aux visites de distilleries, aux entretiens téléphoniques et aux différents échanges réalisés dans le cadre de ce stage nous avons pu avoir une estimation plus proche de la réalité des charges de DCO entrantes pour la majorité des distilleries.

Par contre, peu de données sur les rejets ont pu être collectées. Les données des rejets de JM sont basées sur les résultats d’analyses transmis à l’ODE en 2019 et 2020. Il s’agit de bilans complets réalisés dans les règles de l’art (préleveurs asservis au début, réfrigérés, échantillons bien conservés, analyses réalisées souvent en doublon). Le rendement du système de traitement de JM qui est récent et performant présente 98,64 % de rendement. Les données de rejet pour Le Simon sont également basées sur des résultats d’analyse fournis en 2020 par la distillerie (144 mg/L en sortie).

Pour les autres distilleries, une estimation de la DCO a été réalisée en se basant sur un rendement de traitement de 96 %. Ce chiffre est clairement arbitraire et contestable, et varie probablement en fonction des types de traitements et des charges entrantes. Nous espérons avoir plus de données à l’avenir pour pouvoir améliorer la fiabilité de l’étude.
TABLEAU 12: CHARGE ORGANIQUE ENTRANTE DE LA DCO

<table>
<thead>
<tr>
<th>Distillerie</th>
<th>Concentration entrante DCO (mg/L)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distillerie du Simon</td>
<td>20 000</td>
<td>Analyse sur la vinasse réalisée en 2018 par le Simon concernant le projet de leurs lagunes aérées</td>
</tr>
<tr>
<td>Distillerie JM</td>
<td>19 798</td>
<td>Données du projet TerreRHUM en ayant réalisée une moyenne sur 10 bilans (28/01/20 à 04/06/20)</td>
</tr>
<tr>
<td>Distillerie La Mauny</td>
<td>22 500</td>
<td>Données d’autosurveillance de la distillerie</td>
</tr>
</tbody>
</table>

TABLEAU 13: CARACTERISATION DE LA DCO (kg/an) EN 2017 (SOURCE : CREOCEAN)

<table>
<thead>
<tr>
<th>Distillerie</th>
<th>Masse émise de DCO 2017 (kg/an)</th>
<th>Masse vinasses brute DCO (Kg/an)</th>
<th>Masse vinasses traitées DCO (Kg/an)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distillerie du Simon</td>
<td>6 907</td>
<td>798 750</td>
<td>3 195</td>
</tr>
<tr>
<td>Distillerie JM</td>
<td>8 843</td>
<td>727 718</td>
<td>2911</td>
</tr>
<tr>
<td>Distillerie La Favorite</td>
<td>3 378</td>
<td>55 000</td>
<td>220</td>
</tr>
<tr>
<td>Distillerie Neisson</td>
<td>1 054 (valeur aberrante selon Creocean car elle est supérieure à 200 % ou inférieure à 10 % de la valeur déclarée N-1)</td>
<td>90 000</td>
<td>360</td>
</tr>
<tr>
<td>Distillerie Saint-James</td>
<td>Inconnu</td>
<td>1 650 000</td>
<td>6 600</td>
</tr>
<tr>
<td>Distillerie du Simon</td>
<td>1 993</td>
<td>900 000</td>
<td>6 480</td>
</tr>
<tr>
<td>Distillerie JM</td>
<td>Inconnu</td>
<td>465 253</td>
<td>6 392</td>
</tr>
</tbody>
</table>

Les calculs réalisés sont les suivants :

Charge organique entrante (kg/an) = \(\frac{\text{Production de vinasse (m3/an) x Concentration entrante DCO (mg/L)}}{1000} \)
Afin de pouvoir mieux exploiter ces résultats, ils sont convertis en Équivalent Habitant (EH). Un EH correspond à un moyen journalier d’effluent d’un habitant ayant une charge de 120 g de DCO. On obtient alors :

TABLEAU 14 : RÉSULTATS DES CALCULS DE LA CHARGE ORGANIQUE EN EH

<table>
<thead>
<tr>
<th>Distillerie</th>
<th>Charge de DCO entrante (EH)</th>
<th>Charge de DCO sortante (EH)</th>
<th>Charge de DCO sortante (EH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distillerie La Mauny</td>
<td>18 236</td>
<td>73</td>
<td>2 735</td>
</tr>
<tr>
<td>Distillerie Depaz</td>
<td>16 615</td>
<td>66</td>
<td>2 492</td>
</tr>
<tr>
<td>Distillerie La Favorite</td>
<td>1 256</td>
<td>5</td>
<td>188</td>
</tr>
<tr>
<td>Distillerie Neisson</td>
<td>2 055</td>
<td>8</td>
<td>308</td>
</tr>
<tr>
<td>Distillerie Saint-James</td>
<td>37 671</td>
<td>151</td>
<td>5 651</td>
</tr>
<tr>
<td>Distillerie du Simon</td>
<td>20 548</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>Distillerie JM</td>
<td>10 622</td>
<td>146</td>
<td></td>
</tr>
<tr>
<td>SOMMME</td>
<td>107 000</td>
<td>597</td>
<td>17 318</td>
</tr>
</tbody>
</table>

Données distillerie

- **Données estimées (96 % rendement)**
- **Données estimées (85 % rendement)**

Une seconde estimation de rendement (85 %) apporterait des résultats bien différents avec une charge cumulée en sortie de 17 318 EH en DCO.
3. **Rejet Bagasse**
La bagasse est le résidu de la canne à sucre après passage dans les moulins. C’est un matériau sec et fibreux de couleur jaune qui est généralement revalorisé dans les distilleries. La bagasse est utilisée en partie dans les chaudières afin de servir de combustible. Elle est également mise à disposition par les distilleries pour les agriculteurs qui s’en servent pour faire du compost.

Sous l’effet du vent, il arrive qu’une partie des bagasses soit envoyée vers les exutoires des eaux de surface. Dans ce cas, un dégrilleur est parfois installé avant rejet de ces eaux vers le milieu naturel.

4. **Prélèvement d’eau**
L’eau est une ressource essentielle au bon fonctionnement d’une distillerie. Les distilleries l’utilisent lors de l’étape de broyage de la canne afin d’en extraire le maximum de jus (eau d’imbibition). Elle est également utilisée dans les process pour refroidir les machines (moulins, colonne à distiller).

L’eau utilisée peut être issue du réseau d’eau de distribution d’eau potable (c’est le cas de la distillerie Neisson qui utilise uniquement de l’eau de distribution) ou du PISE (réseau de distribution de l’eau du barrage de la Manzo à des fin agricoles). Les distilleries peuvent également disposer de leur propre prélèvement d’eau en rivières.

Un tableau récapitulatif présente les prélèvements d’eau réalisés par les distilleries en 2016 selon l’IREP (registre français des rejets et des transferts de polluants):

<table>
<thead>
<tr>
<th>Distillerie</th>
<th>Prélèvement en eau (m3/an)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Le Simon</td>
<td>96 000</td>
</tr>
<tr>
<td>Saint-James</td>
<td>88 600</td>
</tr>
<tr>
<td>La Mauny</td>
<td>114 000</td>
</tr>
<tr>
<td>Depaz</td>
<td>887 000</td>
</tr>
<tr>
<td>La Favorite</td>
<td>Inconnu</td>
</tr>
<tr>
<td>Neisson</td>
<td>Inconnu</td>
</tr>
<tr>
<td>JM</td>
<td>86 000</td>
</tr>
<tr>
<td>Galion</td>
<td>241 000</td>
</tr>
</tbody>
</table>

Au total, ce sont plus de 1 500 000 de m3 d’eau qui ont été prélevés durant l’année 2016 par les distilleries. Sachant que le secteur agricole de la Martinique consomme environ 7 800 000 m3 d’eau (données ODE 2017), les distilleries représentent environ 19 % de la consommation en eau dans ce secteur.
B. Traitement des rejets de vinasse

1. Bibliographie des systèmes de traitements

En Martinique, plusieurs méthodes de traitement sont utilisées afin de traiter les rejets de vinasses. Les procédées présents actuellement en Martinique sont les suivants :

- Lagunage (aérée ou non aérée)
- Méthanisation
- Filtres plantés de végétaux
- Filtration
- Centrifugation

 a) Prétraitements

Filtration

La filtration est un procédé de pré-traitement dans les distilleries. Il permet aux distilleries de séparer les phases solides et liquides de leurs effluents afin d’obtenir un meilleur rendement du système de traitement secondaire. Il peut être installé juste après l’étape de broyage des cannes à sucre. Cette technologie nécessite un entretien régulier afin d’éviter le colmatage des filtres mais a une bonne efficacité et permet d’atteindre de bon rendement. Deux types de filtres sont utilisés par les distilleries, les filtres à bandes et les filtres rotatifs qui sont plus modernes. Cela permet de séparer le jus de canne de la folle bagasse (résidus de fibre) que l’on peut réutiliser dans les moulins.

Centrifugation

La centrifugation est également un procédé de pré-traitement. Il permet aussi de séparer les phases solides et liquides des effluents. Cette étape a pour but d’éliminer le maximum de MES de l’effluent à traiter. Dans le cas de la distillerie La Mauny, le fond des cuves de fermentation sont recueillis afin d’être passés à la centrifugeuse. Ce sont 500L par cuve qui sont prélevés à chaque fois. La centrifugation va séparer les phases liquides et solides, le jus est envoyé dans les colonnes. La partie solide est donnée aux agriculteurs pour être épandue. Selon la Mauny, cette étape de centrifugation permet d’obtenir un rendement de 4%.

 b) Traitements secondaires

Lagunage

Le lagunage est un procédé de traitement adapté aux vinasses. Il est également utilisé pour le traitement des eaux usées domestiques. Il s’agit d’un procédé simple, fiable et peu onéreux présentant des résultats satisfaisants lorsque l’exploitation de l’ouvrage est correctement réalisée. Le traitement par lagunage est constitué de plusieurs petits bassins, mis en parallèle ou en série selon les besoins. Il repose sur le principe de développement d’écosystèmes constitués d’algues, de bactéries ou encore les champignons et développant des relations de symbiose. La charge polluante présente dans les bassins est éliminée par décantation pour les MES et par les organismes présents dans l’effluent pour la matière organique. Deux types de lagunages existent :

- Le lagunage aéré, qui consiste à réaliser un apport d’oxygène dans la lagune. Cet apport d’oxygène est réalisé mécaniquement par la mise en place de turbine ou de canalisations et de pompes. Cela a pour effet d’accélérer la décomposition des matières organiques par les bactéries aérobies dans le milieu ;
Le lagunage non aéré, repose quant à lui sur le principe de l’activité biologique anaérobie. Les charges à traiter sont généralement assez importante. Le processus de dégradation s’effectue en deux étapes : hydrolyse des composés organiques puis transformation en gaz. Le lagunage peut donc générer de mauvaise odeur en raison de cette production de méthane ou de sulfure d’hydrogène.

Figure 12 : « Lagune D » non aéré de la Mauny, lagune de stockage avant rejet en rivière

La méthanisation

La méthanisation est un procédé utilisé dans le domaine de l’agriculture, ainsi que pour traiter les biodéchets. Il est également appelé digestion anaérobie en raison de sa technologie basée sur la dégradation des charges organiques par des micro-organismes. Le principe est de stocker les déchets organiques dans une cuve cylindrique appelé « digesteur », ces déchets sont soumis à l’action de micro-organismes anaérobies. Plusieurs réactions biologiques ont lieu durant la méthanisation telles que :

- L’hydrolyse : cette étape permet de transformer les chaînes organiques complexes (protéines, lipides) en composés plus simple (acide gras, acide aminés) ;
- L’acétogénèse : les produits sont convertis en acide acétique ;
- La méthanogenèse : l’acide acétique est transformé en méthane et CO₂.

La matière résiduelle est alors appelée digestat. Ce procédé a pour avantage de réduire considérablement la quantité de déchets organiques et de produire de l’énergie (le méthane peut être transformé en chaleur ou en électricité). Cependant, ce procédé est complexe à mettre en œuvre et...
onéreux. En Martinique, sur les huit distilleries présentes sur le territoire, seules deux distilleries utilisent la méthanisation afin de traiter leurs déchets.

Les Filtres Plantés de Végétaux (FPV)

Les FPV sont un procédé récent (années 80) et issus de l’assainissement des eaux usées domestiques. Pour le traitement des vinasses, il est utilisé après un lagunage aéré. Il a pour avantage de présenter des performances relativement élevées, une bonne adaptation des variations de charges ainsi qu’un faible cout d’exploitation. Cependant, il nécessite une surface disponible importante ainsi qu’un entretien des végétaux.

Ils sont composés d’un lit de substrat minéral (sable, gravier, pouzzolane selon les cas) de plusieurs couches et granulométries. Les végétaux ont un tissu racinaire permettant de réaliser un réseau de galerie qui draine l’effluent dans le filtre, apportant également de l’oxygène dans le milieu. La dégradation de la charge organique des effluents se fait par les bactéries présentes dans le filtre. La charge organique est alors minéralisée et le filtre génère généralement de l’humus (et pas de boue). Une collecte des eaux épurées se fait à la sortie du filtre planté de végétaux et peut être épandue dans les cultures afin de valoriser l’effluent ou rejetée dans le milieu naturel.

Figure 13 : Plan aérien des filtres plantés de végétaux à la distillerie JM
Ultrafiltration et Osmose inverse

La filtration est un procédé qui s’utilise principalement en traitement d’eau potable, il peut être également utilisé dans le traitement des eaux usées afin de séparer les boues de l’effluent épuré. Certains systèmes sont composés de plusieurs étapes de filtration telle que l’ultrafiltration qui peut être couplée à l’osmose inverse. L’ultrafiltration repose sur une méthode de séparation membranaire basé sur la taille des particules en suspension (entre 1 et 100 nm). Cette filtration est surtout utilisée pour séparer les matières dissoutes mais peut également être utilisée afin de séparer les particules en suspension. La vinasse étant concentrée en MES, ce traitement peut s’appliquer au cas des distilleries afin de traiter ses effluents. L’osmose inverse est un système de filtration basé sur la différence de pression entre la membrane. Une pression hydrostatique est exercée en amont du filtre afin de dépasser la pression osmotique de l’effluent. L’eau traverse alors la membrane et la boue reste retenue par la membrane. L’intérêt de coupler ces méthodes de traitement est d’éviter de colmater les filtres trop vite et également d’avoir un meilleur rendement. L’effluent filtré par ultrafiltration et osmose inverse peut être réutilisé par la suite contrairement aux autres traitements. La qualité de l’eau filtrée est très bonne, les distilleries peuvent donc utiliser cette eau dans le process (afin de refroidir les machines ou pour rincer les cannes à sucre).
Synthèse des avantages et des contraintes des systèmes de traitement :

Traitements primaires

TABLEAU 16 : SYNTHÈSE DES AVANTAGES ET INCONVENIENTS D’UN TRAITEMENT PRIMAIRE

<table>
<thead>
<tr>
<th>Traitement</th>
<th>Avantages</th>
<th>Contraintes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtration</td>
<td>- Bonne efficacité</td>
<td>- Entretien</td>
</tr>
<tr>
<td></td>
<td>- Compacité</td>
<td></td>
</tr>
<tr>
<td>Centrifugation</td>
<td>- Efficacité</td>
<td>- Nuisance sonore</td>
</tr>
<tr>
<td></td>
<td>- Simplicité d’utilisation</td>
<td></td>
</tr>
</tbody>
</table>

Traitements secondaires

TABLEAU 17 : SYNTHÈSE DES AVANTAGES ET INCONVENIENTS D’UN TRAITEMENT SECONDAIRE

<table>
<thead>
<tr>
<th>Traitement</th>
<th>Avantages</th>
<th>Contraintes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagunage seul</td>
<td>- Fiable et entretien simple</td>
<td>- Nécessite de l’espace</td>
</tr>
<tr>
<td></td>
<td>- Coût réduit</td>
<td>- Odeurs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Production importante de boues</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Temps de traitement long</td>
</tr>
<tr>
<td>Méthanisation</td>
<td>- Double valorisation de la matière organique</td>
<td>- Coût élevé</td>
</tr>
<tr>
<td></td>
<td>- Pas d’odeurs</td>
<td>- Complexité du suivi et de l’entretien : nécessité du personnel expert à plein temps</td>
</tr>
<tr>
<td></td>
<td>- Diminution de la quantité des déchets à traiter</td>
<td></td>
</tr>
<tr>
<td>Lagunage + filtre planté</td>
<td>- Pas de production de boues</td>
<td>- Entretien régulier des plantes</td>
</tr>
<tr>
<td></td>
<td>- Dispositif d’épuration très efficace</td>
<td>- Suivi régulier des paramètres pour éviter la mortalité des plantes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Nécessite beaucoup d’espace</td>
</tr>
<tr>
<td>Ultrafiltration + Osmose inverse</td>
<td>- Réutilisation de l’eau traitée</td>
<td>- Entretien régulier pour éviter le colmatage des filtres</td>
</tr>
<tr>
<td></td>
<td>- Compact</td>
<td>- Energie consommé pour alimenter les pompes</td>
</tr>
<tr>
<td></td>
<td>- Très efficace</td>
<td>- Complexité de fonctionnement</td>
</tr>
<tr>
<td></td>
<td>- Pas d’odeurs</td>
<td>- Valorisation des concentrats</td>
</tr>
</tbody>
</table>

40
2. Traitement mis en place par les distilleries en Martinique

Le tableau suivant présente les types de traitement mis en place par les distilleries de Martinique. Ces éléments proviennent des données transmises par la DEAL et des visites de terrain réalisé dans 5 distilleries.

Tableau 18 : Filière de traitement des distilleries de Martinique

<table>
<thead>
<tr>
<th>Distillerie</th>
<th>Groupe/propriétaire</th>
<th>Procédés de traitement des effluents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Le Simon</td>
<td>José Hayot</td>
<td>Lagunage aéré</td>
</tr>
<tr>
<td>St James</td>
<td>La Martiniquaise</td>
<td>Méthanisation + lagunage aéré + épandage (REUT) de 80% des effluents</td>
</tr>
<tr>
<td>La Mauny</td>
<td>Chevrillon</td>
<td>Lagunage aéré</td>
</tr>
<tr>
<td>Depaz</td>
<td>La Martiniquaise</td>
<td>Méthanisation</td>
</tr>
<tr>
<td>La Favorite</td>
<td>M. Dormoy</td>
<td>Lagunage aéré</td>
</tr>
<tr>
<td>Neisson</td>
<td>Vernant Neisson</td>
<td>Lagunage aéré + Epandage</td>
</tr>
<tr>
<td>JM</td>
<td>Bernard Hayot</td>
<td>Lagunage aéré + filtres plantés de végétaux + Epandage</td>
</tr>
<tr>
<td>Galion</td>
<td>SEEM (CTM étant l’actionnaire principal)</td>
<td>Vinasses envoyées à St James</td>
</tr>
</tbody>
</table>

a) Traitement des vinasses de la distillerie JM

La distillerie JM produit 2 millions de litres de rhum 55°. Elle se trouve dans le nord-est de la Martinique, sur la commune de Macouba. Pour sa dernière campagne, la distillerie a récolté 20 000 tonnes de canne à sucre. Elle se veut dans une dynamique d’innovation et de modernisation de sa chaîne de traitement des vinasses. C’est la première distillerie en Martinique à avoir choisi d’appliquer un traitement par FPV après un passage en bassin d’aération.

Les effluents traités sont ensuite épandus sur les cultures de canne/banane et présentent une qualité suffisante pour cet usage.
La chaine de traitement est expliquée sur le synoptique suivant :

La distillerie envoie un débit moyen de 200 m3/j vers la filière de traitement. Après passage dans le dégrilleur, l’effluent transite dans le bassin tampon afin de pouvoir contrôler le débit à traiter. La première étape du traitement est le bassin d’aération. Celui-ci permet la dégradation de la charge organique des vinasses. Les vinasses y sont stockées et aérées par 3 turbines pendant 30 min toutes les heures. Cela permet de ne pas avoir de sédiment au fond du bassin et aux bactéries aérobies de dégrader une partie de la matière organique. Cette étape de traitement permet de faire chuter la DBO$_5$ et la DCO de l’effluent mais aussi de remonter le pH.

![Figure 15: Synoptique de la filière traitement des effluents de la distillerie JM](image)

![Figure 16: Bassin d’aération de la distillerie](image)
Dans une optique d’optimisation des filtres plantés de végétaux, la distillerie JM a décidé de sélectionner et de comparer 2 espèces de végétaux :
- Les Cyperus alternifolius ;
- Les Heliconia psittacorum.

Des prélèvements sur l’ensemble de la filière de traitement ont été réalisées par l’ODE et analysés par le Laboratoire Territorial d’Analyses. Soient, 9 bilans 24h sur toute la saison (28/01/2020 au 04/06/2020).

TABLEAU 19 : RESULTAT DU TRAITEMENT DU BASSIN D’AÉRATION (MOYENNE DES 9 BILANS 24H)

<table>
<thead>
<tr>
<th></th>
<th>Entrée bassin d’aération</th>
<th>Sortie bassin d’aération</th>
</tr>
</thead>
<tbody>
<tr>
<td>MES (en mg/L)</td>
<td>3 763</td>
<td>6 746</td>
</tr>
<tr>
<td>DBO₅ (en mg/L)</td>
<td>7 487</td>
<td>2 105</td>
</tr>
<tr>
<td>DCO (en mg/L)</td>
<td>19 798</td>
<td>8 000</td>
</tr>
</tbody>
</table>

On remarque une nette diminution de la DBO₅ et de la DCO grâce au bassin d’aération. Le Taux de MES est plus élevé du fait de l’augmentation de l’activité bactérienne.

TABLEAU 20 : RESULTATS DU FILTRE PLANTÉ DE ROSEAUX DE LA DISTILLERIE JM, 2020

<table>
<thead>
<tr>
<th></th>
<th>Entrée du filtre planté de végétaux</th>
<th>Sortie du filtre planté de végétaux</th>
</tr>
</thead>
<tbody>
<tr>
<td>MES en mg/L</td>
<td>7 224</td>
<td>176</td>
</tr>
<tr>
<td>DBO₅ en mg/L</td>
<td>2 105</td>
<td>204</td>
</tr>
<tr>
<td>DCO en mg/L</td>
<td>6 655</td>
<td>272</td>
</tr>
</tbody>
</table>

Un calcul de la charge organique en DCO entrante et sortante a été effectué à partir des données ci-dessus afin d’analyser l’efficacité du traitement mis en place par la distillerie JM. Il est important de ne pas oublier que la totalité des rejets de vinasses traitées de JM sont épandus. Il y a donc aucune valeurs limites concernant les MES, DCO et DBO₅ en ce qui concerne l’effluent en sortie du filtre planté de végétaux dans l’arrêté préfectoral.

TABLEAU 21 : ANALYSE DE L’EFFICACITE DU TRAITEMENT DE JM

<table>
<thead>
<tr>
<th>Charge organique entrante</th>
<th>Charge organique sortante</th>
<th>Rendement</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCO (EH)</td>
<td>36 663</td>
<td></td>
</tr>
<tr>
<td>DCO (EH)</td>
<td>504</td>
<td>98,6 %</td>
</tr>
</tbody>
</table>

b) Le traitement des vinasses de la distillerie la Mauny :
La Mauny se trouve dans le sud de la Martinique, sur la commune de Rivière-Pilote. Elle fait également partie des distilleries générant une production assez importante de rhum sur l’île. Selon La Mauny, en 2019, 25 000 tonnes de canne à sucre ont été récoltées afin de produire 2,78 Millions de Litres de rhum à 55°.

Le volume annuel de vinasse à traiter par La Mauny est d’environ 50 000 tonnes de vinasse/an. Durant sa dernière campagne 2019, elle a eu 35 500 m³ de vinasse à traiter.
Sa filière de traitement des effluents repose sur le système de lagunages. Elle est détaillée par le synoptique suivant :

Figure 17 : Synoptique de la filière de traitement de la distillerie La Mauny

La distillerie La Mauny reçoit un débit journalier durant la campagne sucrière de 225 m3/J. La distillerie La Mauny n’effectue pas un traitement avec rejet en continu comme on a pu le voir sur la distillerie JM.

La première lagune nommée lagune A est utilisée en tant que bassin tampon. Elle a une capacité de 20 000 m3, la lagune A permet alors de stocker la vinasse sortant de la distillerie et d’ensuite pouvoir alimenter la lagune de traitement (lagune B) tout en pouvant contrôler le niveau de cette dernière.

Figure 18 : Lagune A de la distillerie La Mauny
La lagune A se trouvant au-dessus de la seconde lagune, la lagune B de 17 000 m³ est alors alimentée en gravitaire. Le traitement de cette dernière consiste à alterner des phases d’aération et de repos. Une phase d’aération peut durer 10 jours consécutifs.

La lagune B possède 2 pompes alimentées énergiquement par le réseau EDF, ces pompes permettent d’envoyer de l’oxygène dans le bassin pour stimuler l’activité bactérienne. La Mauny comme toutes les autres distilleries se doivent de mettre en place un système d’autosurveillance afin d’observer si le traitement mis en place est suffisant et répond aux exigences fixées par leur arrêté préfectoral. Des prélèvements ponctuels sont alors effectués dans la lagune A et B, l’effluent est analysé soit dans le laboratoire de La Mauny soit chez un laboratoire privé extérieur afin de mesurer la concentration de DBO₅, DCO, MES, azote, phosphore et pH.

Une fois la lagune B oxygénée, la vinasse est déversée gravitationnellement dans la lagune D qui est une lagune de rejet. Cette lagune possède un volume de 3 000 m³ et se trouve aux abords de la rivière pilote. Durant la campagne, les lagunes sont vidées seulement lorsque le débit de la rivière est suffisamment élevé (souvent lors des crues). En moyenne, la lagune est vidangée une dizaine de fois durant toute la période de la campagne.

Les seuils de l’arrêté de la distillerie La Mauny sont les suivants
- DBO₅ = 200 mg/L
- DCO = 500 mg/L
- MES = 200 mg/L

Concernant la distillerie La Mauny, les résultats de la filière de traitement sont satisfaisants et le rejet de vinasse respecte les normes. Les analyses effectuées par le laboratoire d’eau privé Auréa réalisées en 2018 sont présentées dans le tableau 26 :
TABLEAU 22 : PRELEVEMENT PONCTUEL DE LA VINASSE DE LA DISTILLERIE LA MAUNY, 2018

<table>
<thead>
<tr>
<th>Paramètres physico-chimiques</th>
<th>Résultats</th>
<th>Valeurs limite de l’arrêté</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.65</td>
<td>5.5-8.5</td>
</tr>
<tr>
<td>DCO (en mgO₂/L)</td>
<td>215</td>
<td>500 mg/L</td>
</tr>
<tr>
<td>DBO₅ (en mgO₂/L)</td>
<td>8</td>
<td>200 mg/L</td>
</tr>
<tr>
<td>MES (en mg/L)</td>
<td>200</td>
<td>200mg/L</td>
</tr>
<tr>
<td>Azote global (en mg/L)</td>
<td>77</td>
<td>Inconnu</td>
</tr>
<tr>
<td>Phosphore total (en mg/L)</td>
<td>21</td>
<td>Inconnu</td>
</tr>
</tbody>
</table>

La distillerie La Mauny n’est pas totalement satisfaite de son système de traitement. En effet elle n’est pas en mesure de traiter sa production de vinasse en continue. La vinasse traitée doit être rejetée uniquement lorsque la rivière est en crue afin de permettre une dilution de l’effluent. L’arrêté d’autorisation d’exploitation stipule que la valeur limite du débit de rejet des vinasses sera en fonction du débit de la rivière et de l’analyse de l’impact du rejet sur la rivière.

De plus, La Mauny fait face à des problèmes de voisinage se plaignant d’odeurs et de nuisances sonores. Afin de répondre à ces attentes, La distillerie envisage de modifier son procédé de traitement des vinasses. Elle a également la volonté de mettre en place des traitements plus écologiques qui permettront de réduire l’impact sur l’environnement. A noter que les investissements récents, notamment le filtre rotatif au niveau des moulins et le décanteur rotatif au niveau des cuves de fermentation ont permis d’améliorer le traitement et diminuer les plaintes de voisinage.

Ainsi, 2 projets sont donc en cours d’étude par La Mauny. Le premier consiste à améliorer l’aération de la lagune B qui manque d’efficacité. En effet, il est nécessaire d’aérer 10 jours de suite afin d’obtenir une bonne oxygénation du bassin, de plus, ce système d’aération commence à être âgé et montre une forte consommation électrique. De nouvelles turbines d’aération permettraient une efficacité de traitement nettement améliorée et une diminution de la consommation électrique.

Le deuxième projet consiste à installer des filtres plantés de végétaux en sortie de lagune B. Ces filtres se trouveront au-dessus de la lagune B, il faudra donc mettre en place une pompe afin de pouvoir alimenter les filtres.

Le montant des travaux pour les 2 installations citées ci-dessus s’élèvent à environ 2,5M d’euros. La mise en place des filtres plantés de végétaux est éventuellement prévue pour l’année 2023 quand les turbine pourraient être installés dès 2021.

c) Traitement des vinasses de la distillerie Saint-James

La distillerie Saint-James est la plus grosse distillerie de la Martinique. Elle appartient au groupe international La Martiniquaise et se trouve sur la commune de Sainte-Marie. Elle se situe plus précisément aux abords de la rivière Sainte-Marie, rivière où la distillerie prélève de l’eau et rejette une partie de ses effluents. Elle reçoit environ 40 000 tonnes de canne à sucre par an. Saint-James distille le rhum pour les producteurs suivants :

- Rhum Maniba
- Rhum Old Nick
- Rhum Hardy
- Rhum Saint-James
- Rhum Bally
- Rhum Madkaud
Afin de traiter ses vinasses, le procédé de traitement de Saint-James se décompose en deux sites. Sur le site de production de Saint-James, la vinasse sortant directement des colonnes à distiller est d’abord passé dans un filtre Johnson puis dans un refroidisseur adiabatique.

Le deuxième site de traitement se trouve hors de l’enceinte de la distillerie Saint-James. Le traitement appliqué est la méthanisation ainsi que le lagunage aéré.

Les eaux de lavage et de refroidissement de la distillerie sont envoyées en décantation. Elles sont utilisées en circuit fermé et renvoyées dans l’usine pour réutilisation après traitement. En cas de trop plein, elles sont envoyées vers le traitement des vinasses.

Les eaux de chaudières sont traitées par un filtre rotatif. Cela permet de récupérer les imbrulés qui sont ensuite envoyés aux agriculteurs pour amender le sol.
La distillerie possède 3 cuves de méthanisation. Ce système a été mis en place en 2007 pour un coût d’environ 3 millions d’euros.

Avant cela, le traitement était réalisé avec 2 lagunes de 10 000 m3. Saint James a choisi de remplacer le lagunage aéré par la méthanisation car le procédé est moins énergivore, plus rapide et beaucoup plus compact. En termes de consommation énergétique, il y a un facteur 5 de consommation électrique entre la méthanisation (85KWh) et le lagunage selon les expériences de la distillerie. La distillerie a tout de même conservé ses lagunes et en utilise une afin de compléter le traitement par la méthanisation. La deuxième lagune a été séparée en 2 afin de stocker 5000 m3 de vinasse brute et 5000 m3 de vinasse traitée.

La distillerie traite également les vinasses de la production de rhum de l’usine du Galion qui s’effectue à Trinité. Cette vinasse est nettement plus chargée en matière organique que la vinasse de Saint-James car le Galion produit du rhum de mélasse. Selon les estimations de la distillerie Saint-James, la vinasse issue du rhum agricole qu’il traite représente plus de 4,6 millions de litres, et la vinasse issue du rhum mélasse du Galion représente environ 1,2 millions de litres.

La méthanisation sert surtout à dégrader la DCO dissoute dans les vinasses qui présente un taux moyen de 20 à 45 g/L. La fourchette basse correspond au rhum agricole quant à la fourchette haute au rhum de mélasse. Le traitement se déroule de la façon suivante : Les vinasses brutes étant très chargées, elles sont d’abord diluées avec de la vinasse traitée, afin de ne pas dégrader le méthaniseur (1 part de vinasse brute avec 3 parts de vinasses traitées). Un apport de soude est également réalisé afin de réduire l’acidité (elle présente généralement un pH de 3) et de ne pas entrainer de mortalité des bactéries. Elles sont ensuite envoyées dans le circuit de traitement. Le temps de séjour dans les cuves est de seulement 24h. Il y a 3 étapes majeures durant la méthanisation qui permettent de dégrader la DCO :

- L’hydrolyse : cette étape permet de transformer les chaînes organiques complexes (protéines, lipides) en composé plus simple (acide gras, acide aminés)
- L’acétogénèse : les produits sont convertis en acide acétique
- La méthanogenèse : l’acide acétique est transformé en méthane et CO₂. La méthanisation se fait en condition anaérobie afin de dégrader au maximum les composés organiques des vinasses par les bactéries.

A cela s’ajoute une étape de désulfuration des sulfures produits par le traitement.

On mesure un abattement de 60 à 70 % de la DCO en sortie du méthaniseur. Le traitement est ensuite complété par le lagunage.

Le bon fonctionnement du traitement nécessite le travail de 2,5 personnes en permanence.

Un des avantages de ce traitement est la très faible production de boue. Celles-ci sont d’ailleurs conservées pour réensemencer les cuves avec les bactéries adaptées.

La majorité de la vinasse traitée est épandue sur les nombreux terrains de la distillerie Saint-James. Cependant, en fin de saison, si les cuves sont encore pleines et le traitement pas encore terminé, un rejet en rivière est envisageable, souvent entre 10 et 20 000 m³ de vinasses traitées soit 17 à 33 % du rejet en rivière.

Par soucis de logistique, le méthane produit par la dégradation des vinasses ne peut pas être exploité. Les moteurs fonctionnant au méthane sont très fragiles et nécessitent un entretien fréquent. A noter qu’il y a peu de fournisseurs dans la caraïbe.

d) Traitement des vinasses de la distillerie Neisson

La distillerie Neisson se trouve au Nord-Ouest de la Martinique sur la commune du Carbet. C’est l’une des plus petites distilleries de l’île avec 2047 HAP produit pour l’année 2019. Pour sa dernière campagne, la distillerie Neisson a récolté 3 500 tonnes de canne à sucre. La distillerie utilise comme système de traitement le lagunage aéré. Son système de traitement est composé de 2 lagunes de 6500 m³.
Chaque lagune est équipée de huit aérateurs HYDRODYN afin de pouvoir aérer la vinasse et ainsi faire chuter la DCO. La vinasse de Neisson est traitée uniquement dans la première lagune. La deuxième lagune sert principalement de bassin de secours. Par campagne, ce sont 5 000 m3 de vinasse qui sont produits et traités dans la lagune d’aération (selon le fabricant Biotrade). La vinasse y est stockée pendant toute la campagne avant d’être traitée durant l’intercampagne (5 mois de traitement). La majorité de la vinasse traitée est prélevée et épandue dans les champs de canne à sucre appartenant à la distillerie.

La distillerie de Neisson n’est pas soumise à autorisation mais seulement à déclaration au vu de sa production annuelle. Cependant, elle est tenue de réaliser une déclaration d’exploitation au préfet afin de pouvoir continuer son activité.

e) Traitement de vinasse de la distillerie du Simon
La distillerie du Simon se trouve dans le sud-est de la Martinique, plus exactement sur la commune du François. Elle est implantée sur une zone côtière à proximité de la baie du Simon. Pour la campagne 2019, la distillerie du Simon a transformé environ 36 000 tonnes de canne à sucre. Elle produit du rhum en majorité pour l’Habitation Clément ainsi que l'Habitation Saint-Etienne. C’est l’une des distilleries de Martinique qui a la plus grosse production de vinasse. Durant ses campagnes sucrières, elle produit entre 35 000 et 45 000 m3 de vinasse.

Afin de traiter ses volumes importants, la distillerie a mis en place deux lagunes de 25 000 m3. Le synoptique suivant présente le traitement de la distillerie :
Le traitement actuel se base sur le lagunage aéré. Afin d’éliminer le maximum de MES en amont avant d’envoyer la vinasse dans les lagunes, Le Simon utilise un dégrilleur. Ce dégrilleur permet d’enlever les particules les plus grossières.

FIGURE 25 : DEGRILLEUR DE LA DISTILLERIE DU SIMON

Une fois que l’effluent a traversé le dégrilleur, il est envoyé dans une des lagunes de traitement. Chaque lagune possède 6 turbines flottantes afin de pouvoir aérer la vinasse. Elles apparaissent sur la figure 25 :
Le stockage des vinasses s’effectue durant toute la période de la campagne, le traitement commence dès que le niveau dans les lagunes est suffisamment haut. Les résultats du traitement des lagunes du Simon figurent dans le tableau 27. Ces résultats sont une moyenne de 4 prélèvements réalisés par la distillerie durant la période de septembre à octobre.

TABLEAU 23 : RÉSULTATS D’ANALYSE DE LA LAGUNE 1 DE LA DISTILLERIE DU SIMON

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Suivi 2017 de la lagune aérée</th>
<th>Valeurs limites de l’arrêté</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphore (mg/L)</td>
<td>7,73</td>
<td>10 (mg/L)</td>
</tr>
<tr>
<td>Azote total (mg/L)</td>
<td>28,075</td>
<td>30 (mg/L)</td>
</tr>
<tr>
<td>DCO (mg/L)</td>
<td>234,375</td>
<td>300 (mg/L)</td>
</tr>
<tr>
<td>DBO5 (mg/L)</td>
<td>49,305</td>
<td>100 (mg/L)</td>
</tr>
<tr>
<td>MEST (mg/L)</td>
<td>128,75</td>
<td>100 (mg/L)</td>
</tr>
</tbody>
</table>

Par ailleurs, la distillerie a lancé une démarche de modernisation de son procédé de traitement. En effet, durant l’aération des vinasses, de fortes odeurs se dégagent des lagunes. Les riverains de la distillerie du Simon se retrouvent parfois incommodés, ainsi que le personnel de la distillerie. De plus, le lagunage étant un procédé de traitement biologique qui dépend du développement d’organismes vivant, il demande une observation très régulière et peut être difficile à parfaitement optimiser. L’aération nécessaire pour obtenir les bonnes conditions consomme aussi beaucoup d’énergie. De plus, la distillerie a connu un manque d’eau durant la saison sèche de 2019 et elle souhaite s’orienter vers un procédé lui permettant de réutiliser les effluents traités dans son process.
Actuellement les vinasses brutes ont une concentration proche de 20g/L en DCO (Analyse réalisée par CARSO).

Un pilote d’ultrafiltration et d’osmose inverse du fournisseur NEREUS a été conçu spécifiquement pour la distillerie et installé sur le site lors de la campagne 2020 afin de pouvoir observer les performances de ce traitement. L’ultrafiltration couplée à l’osmose inverse permet d’enlever la quasi-totalité des boues présentes dans la vinasse. Afin d’augmenter le rendement du pilote de filtration, l’usine du Simon décidé de faire décanter ses vinasses en amont ainsi que de les passer dans un tamis de 1mm. Selon les analyses de la distillerie, l’effluent filtré respecte les valeurs limites préfectorales en cas de rejet en milieu aquatique ; à l’exception du paramètre DCO qui est pour l’instant légèrement au-dessus. Si les eaux traitées doivent être rejetées en mer, il faudra éventuellement compléter le traitement par un lagunage de courte durée pour atteindre la norme sur ce paramètre.

L’objectif étant de réutiliser l’eau traitée dans le processus de fabrication du rhum, les rejets en milieu naturel devraient être limités. L’objectif de la distillerie est de réutiliser au moins 70 % à 80 % des eaux traitées.

Le rétentat (boues issues du traitement) devra être valorisé. Des études sont en cours pour savoir s’il peut être utilisé en épandage agricole après dilution ou pour la fabrication de compost par les plateformes spécialisées.

f) Traitement des vinasses de la distillerie Depaz

Système de traitement des vinasses avec un méthaniseur et un post traitement aérobie. Selon l’exploitant, le rendement serait de 98 à 99 %. Les boues obtenues sont épandues directement sur les parcelles quand la vinasse traitée est rejetée en rivières.

Suite à un entretien téléphonique nous avons obtenus les données suivantes :

Moyennes sur 3 ans :
- Tonnage canne : 31 573 t
- Rhum à 55° : 3 164 123L
- Vinasse : 32 935 m3

g) Traitement des vinasses de la distillerie La Favorite

Au niveau des parcelles de La Favorite, la canne est coupée à la main, cela évite le passage des engins qui tassent les sols. Cela permet aussi d’avoir moins de déchets verts dans la canne et donc d’optimiser le broyage par les moulins. Les parcelles sont replantées tous les 6 ans.

La Favorite (Dormoy) possède 62 ha de canne en propriété pour une production avoisinant 80 t de canne/ha mais seulement 55 t/ha en 2020 à cause de la sécheresse.

Il est utilisé : 3 500 t/an de canne appartenant à La Favorite + 1 000 t/an de canne achetée à d’autres producteurs. Ce qui entraîne une production de 300 000 L de Rhum à 55° par an, à l’origine lors de la déclaration c’était 800 000 L, et le statut était donc soumis à autorisation en tant qu’ICPE. La distillerie n’a pas entrepris les démarches pour modifier son arrêté afin de passer dans le statut soumis uniquement à déclaration. On obtient finalement : 5 000 à 6 000 m3/an de vinasse brute.

Lors du procédé :

La canne est broyée par 3 moulins en série. Ces moulins sont ré usinés au Brésil quand nécessaire. La bagasse récupérée est brulée (60 %) dans les chaudières et le reste (40 %) est utilisé pour le compost.
Le jus en envoyé ensuite dans un filtre rotatif avant de passer l’étape de la fermentation. Une cuve sert de « cuve mère ». Elle estensemencée une seule fois en début de campagne et sert ensuite de stockage pour les levures. Une partie des levures sont transférées dans les autres cuves pour la fermentation. La cuve mère va se rechargée naturellement grâce à la division cellulaire des levures, dans le cas où le milieu reste favorable bien sûr (sur plus de sucre pour nourrir les levures). Une distillerie classique utilisera des additifs pour accélérer le processus de fermentation et le réduire à 24h, ici on reste sur une fermentation naturelle de plus longue durée (72 h), cela parfait les liaisons entre les molécules d’alcool, et améliore le gout... A la fin des 72 heures, le vin est à 5° d’alcool, il est pompé et envoyé vers 2 colonnes de distillation. Les échanges se feront avec la vapeur issue des chaudières dans les différents plateaux de la colonne. Les fumées chargées en alcool sont condensées dans l’alambic et le condensateur est envoyées ensuite dans un bassin de refroidissement pour atteindre une température ambiante. En bas de la colonne, les vinasses sont récupérées en envoyées gravitairement via un réseau de canalisation de l’autre côté de la route, dans une lagune d’aération avec membrane. Les vinasses sont au préalable refroidi avec l’eau de la rivière.

La lagune permet le stockage et le traitement des vinasses. Une rampe de tuyauterie est installée. La vinasse est pompée en fond de lagune puis envoyées dans les tuyaux, mélangées avec de l’air aspirés et ré insérée dans la lagune. Cependant tout le système dépend d’une seule pompe qui consomme beaucoup d’énergie (1 moteur de 250 cv) et tombe régulièrement en panne.

Des travaux sont en cours pour installer un nouveau système d’aération avec Cotram. Au total 6 turbines flottantes seront posées sur le bassin 20 cv/turbine. La fiabilité sera donc plus élevée et la consommation électrique moindre. La Favorite étudiera un éventuel système d’épandage des vinasses traitées ainsi que la mise en place de filtres plantés de végétaux si nécessaire. La première partie du projet avec les turbines et la gestion automatisée est budgétée autour de 590 000 €.

h) Traitemnt des Vinasse de la distillerie Le Galion

Le Galion produit du RTS (Rhum Traditionnel de Sucre) par l’intermédiaire de Saint-James (produit à base de matières sucrées) et produit en interne le rhum Grand Arome à partir de Mélasse (environ 700 000 L/an Rhum 55°) ce qui correspond à environ 2 540 m3/an de vinasses. Ces vinasses sont envoyées à Saint-James pour être traitées (camion + citerne).

3. Bilan

Les rendements de traitement des vinasses ont pu être déterminés uniquement pour les 3 distilleries qui ont transmis des résultats d’analyses des effluents en sortie. Ils apparaissent dans le tableau ci-dessous.
Tableau 24 : Efficacité des traitements des distilleries (source: données des distilleries)

<table>
<thead>
<tr>
<th>Distillerie</th>
<th>Charge entrante (EH)</th>
<th>Charge sortante (EH)</th>
<th>Rendement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Le Simon</td>
<td>20 700</td>
<td>256</td>
<td>98%</td>
</tr>
<tr>
<td>JM</td>
<td>37 000</td>
<td>358</td>
<td>99%</td>
</tr>
<tr>
<td>La Mauny</td>
<td>37 500</td>
<td>504</td>
<td>98%</td>
</tr>
</tbody>
</table>
Conclusion

La filière de transformation de la canne en rhum et en sucre est un secteur majeur de la Martinique présentant des intérêts économiques, sociaux et culturels forts. Il est important de les concilier avec les enjeux environnementaux de ce territoire.

Plusieurs pressions notables de la filière sur les milieux aquatiques sont identifiées dans le présent rapport : l’usage de pesticides, les prélèvements d’eau, l’érosion des sols, les apports d’engrais ou encore les rejets des distilleries.

Il a été décidé d’axer le document sur les rejets des distilleries étant données le peu de bibliographie existant sur le sujet en Martinique et l’importante charge polluante des vinasses. Bien que la qualité des rejets se soit nettement améliorée en 20 ans, une progression est encore possible.

Cette étude permet de constater que la plupart des distilleries de Martinique sont ou ont été dans une démarche d’amélioration et de modernisation de leur filière de traitement.

Cela est déjà fait pour les distilleries Depaz et Saint James qui ont mis en place un méthaniseur depuis plusieurs années (Saint James traite également les vinasses provenant du Galion), ainsi que pour la distillerie JM qui a récemment mis en place un procédé de filtres plantés de végétaux. Les filtres montrent des résultats probants et efficace.

La distillerie du Simon vient tout juste de mener des expérimentations sur le traitement par ultrafiltration et osmose inverse qu’elle prévoit d’installer rapidement en remplacement du lagunage existant.

La Mauny souhaite également se tourner vers les filtres plantés de végétaux en association à son lagunage dans les années à venir.

La favorite est en train de mettre en place un système d’aération plus fiable et performant pour son procédé de lagunage.

Etant donné que les volumes de vinasse à traiter de la distillerie Neisson sont relativement faibles, le traitement actuel par lagunage semble être adapté.

Un accompagnement technique pourrait être réalisé par l’ODE si des distilleries souhaitent faire évoluer leur filière de traitement ou évaluer l’impact de leurs rejets.

Il est à noter un manque de données sur les rejets de vinasse des distilleries. Ces données devraient être disponibles sur la plateforme MONAIOT (la plateforme GEREP et la plateforme Gidaf ont fusionné car les industriels sont tenus d’y ajouter leurs résultats d’autosurveillance. Cependant, nous n’avons pas encore accès à cette plateforme. Ainsi, la majeure partie des résultats présentés proviennent des données transmises directement par les distilleries.
Bibliographie

Office De l’Eau, Révision de l’état des lieux, cahier 3, Inventaire des pressions et activités humaines, 26/09/19

La filière canne-sucre-rhum, Ministère de l’Alimentation, l’Agriculture et de la Forêt, daaf.martinique.agriculture.gouv.fr/La-filiere-canne-sucre-rhum,201, 14/06/2016

Ctcs-Martinique,2008. Site Internet. Présentation de la filière. URL : www.ctcs.mq

BOCALY Mélissa, ARQUE Alexandre, Suivi des produits phytopharmaceutiques dans les cours d’eau de la Martinique, 2019.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Informations générales</th>
<th>Usages</th>
<th>Réglementation</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D</td>
<td>Le 2,4-D est un herbicide sélectif de la famille des aryloxyacides utilisé en Martinique dans la culture de la canne à sucre.</td>
<td>Canne à sucre</td>
<td>Autorisé</td>
<td>Herbicide</td>
</tr>
<tr>
<td>2,4-MCPA</td>
<td>Le 2,4-MCPA est un herbicide de la famille des aryloxyacides utilisé dans la culture de la canne à sucre.</td>
<td>Canne à sucre</td>
<td>Autorisé</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Amétryne</td>
<td>L’amétryne est un herbicide de la famille des triazines dont l’usage est interdit depuis 2003</td>
<td>Ananas, canne à sucre, banane</td>
<td>Interdit (2003)</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Asulame</td>
<td>L’asulame est un herbicide de la famille des carbamates utilisé principalement sur la canne à sucre. Son usage est interdit depuis la fin de l’année 2012. Plusieurs dérogations ont eu lieu et le produit a été utilisé jusqu’en janvier 2018. Ce produit ne bénéficie plus de dérogations depuis.</td>
<td>Canne à sucre</td>
<td>Interdit</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Diuron</td>
<td>Le diuron est un herbicide appartenant à la famille des urées substituées. Il a été utilisé sur plusieurs cultures (banane, canne à sucre, ananas) ainsi qu’en zones non agricoles (voirie, espaces verts, etc.). Bien que son utilisation ait été interdite en 2008, il est fréquemment quantifié en Martinique.</td>
<td>Banane, canne à sucre, ananas, ZNA, voiries</td>
<td>Interdit (2008)</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>Le glyphosate est un herbicide systémique appartenant à la famille des acides aminés. C’est le produit phytosanitaire le plus utilisé au monde. Son métabolite, l’AMPA, est fréquemment quantifié dans les eaux martiniquaises.</td>
<td>Multiples cultures dont banane</td>
<td>Autorisé</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Métronitrone</td>
<td>Le métronitrone est un herbicide de la famille des triazines utilisé dans la culture de la canne à sucre.</td>
<td>Canne à sucre</td>
<td>Autorisé</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Métolachlore</td>
<td>Le métolachlore est un herbicide de la famille des chloroacétamides qui a été interdit en 2003 et remplacé par son isomère le S-métolachlore. Le métolachlore n’a jamais été homologué sur des cultures présentes en Martinique.</td>
<td>Canne à sucre</td>
<td>Interdit (2003)</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Monuron</td>
<td>Le monuron est un herbicide de la famille des urées substituées qui a été interdit en 1994.</td>
<td>Canne à sucre</td>
<td>Interdit (1994)</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Pendiméthaline</td>
<td>Le pendiméthaline est un herbicide de la famille des dinitroanilines.</td>
<td>Canne à sucre, maraîchage</td>
<td>Autorisé</td>
<td>Herbicide</td>
</tr>
<tr>
<td>S-Métolachlore</td>
<td>Le S-métolachlore est un herbicide de la famille des organochlorés qui est un isomère du métolachlore (molécule interdite depuis 2003). Son usage est autorisé.</td>
<td>Canne à sucre</td>
<td>Autorisé</td>
<td>Herbicide</td>
</tr>
</tbody>
</table>